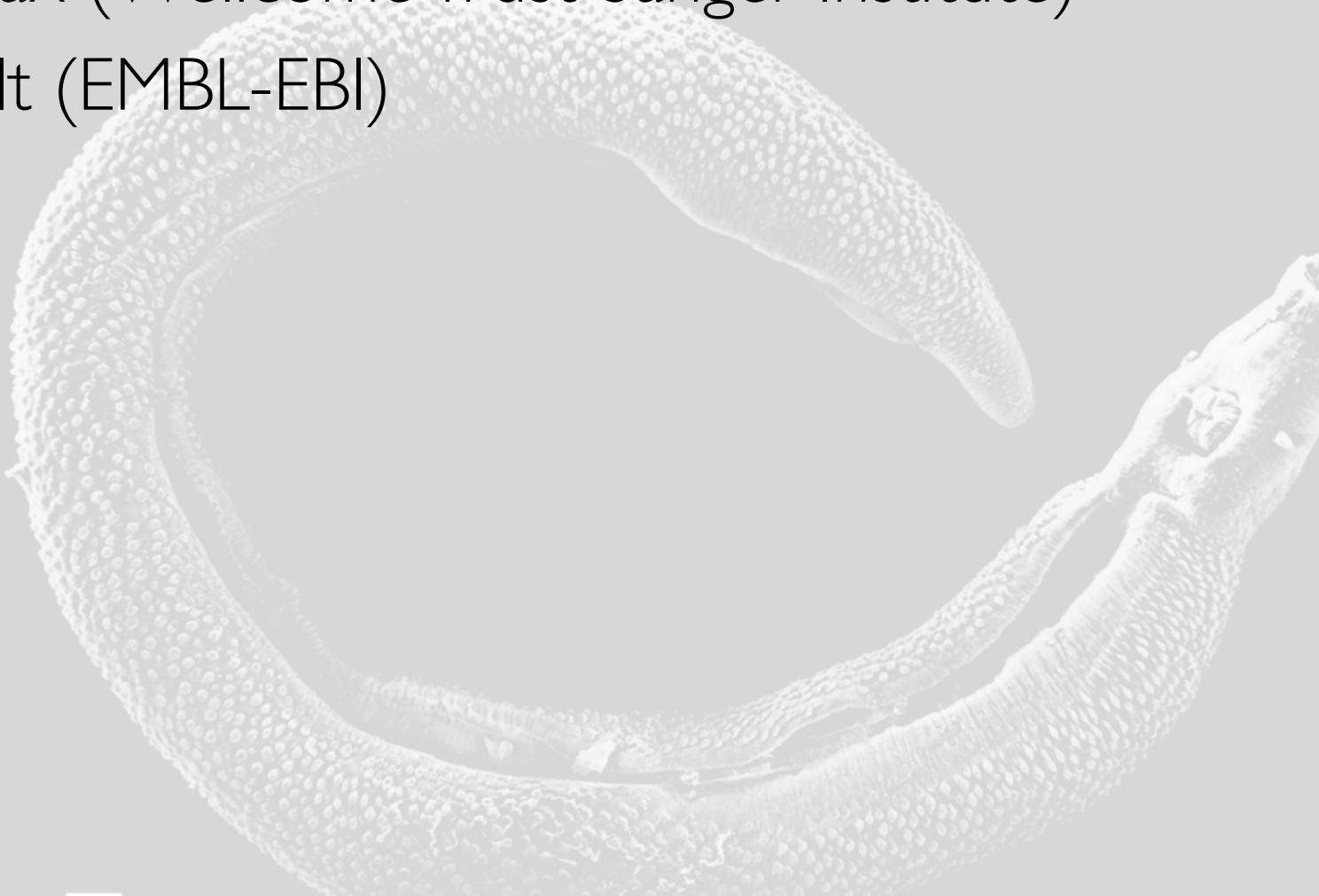


# An Introduction to using WormBase ParaSite


Jane Lomax, Bruce Bolt

Wellcome Trust Sanger Institute and  
EMBL-EBI

# Course trainers

Jane Lomax (Wellcome Trust Sanger Institute)

Bruce Bolt (EMBL-EBI)



# Course Outline

10:30 - 12:00 (Jane)

Using the website: Practical exercises

12:00 - 13:00

Lunch Break

13:00 - 13:45 (Bruce)

Sequence searching with BLAST: Practical exercises

13:45 - 14:30 (Bruce)

Data export with BioMart (Part 1): Practical exercises

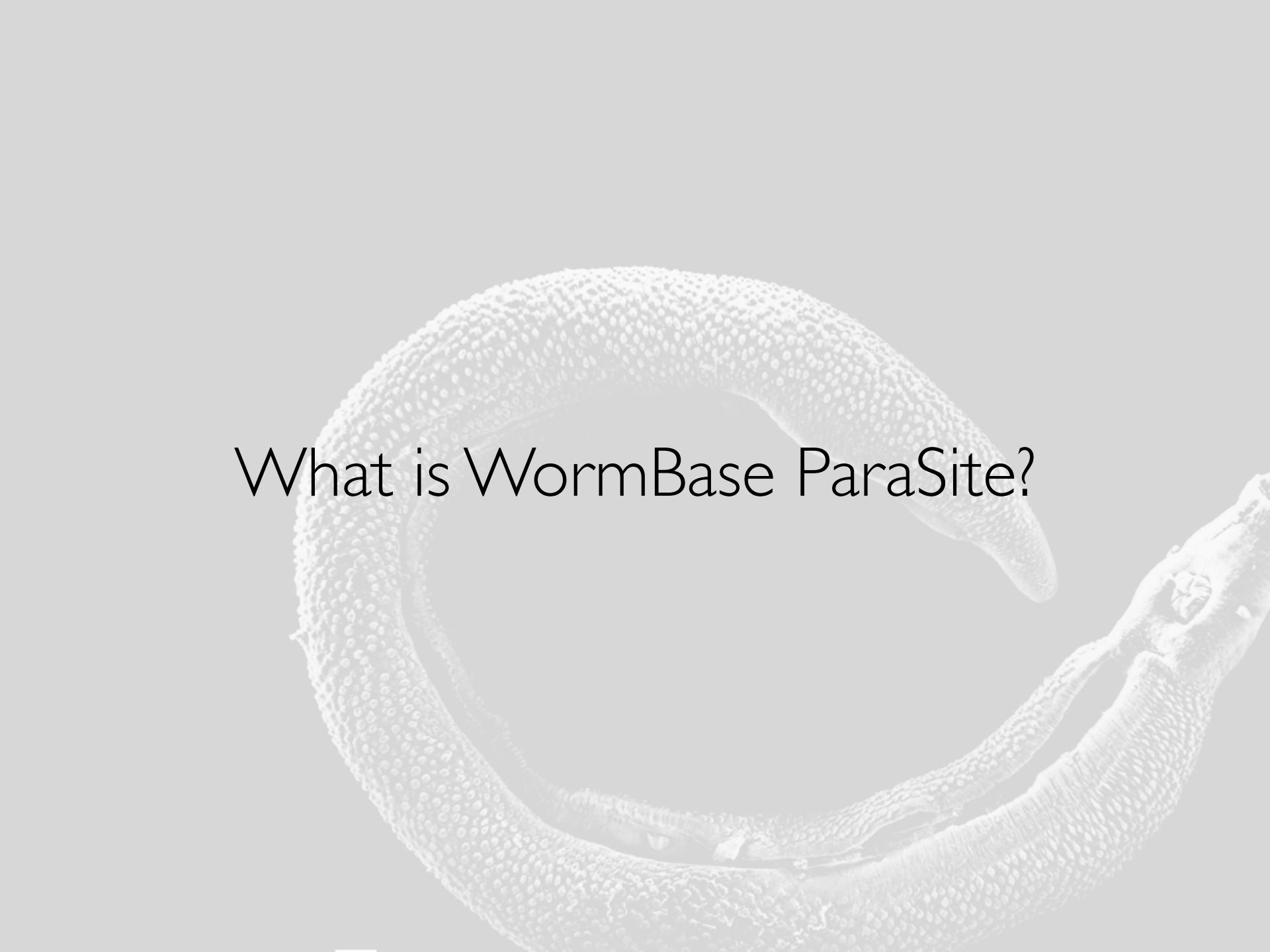
14:30 - 14:50

Tea & Coffee Break

14:50 - 15:20 (Jane)

Data export with BioMart (Part 2): Practical exercises

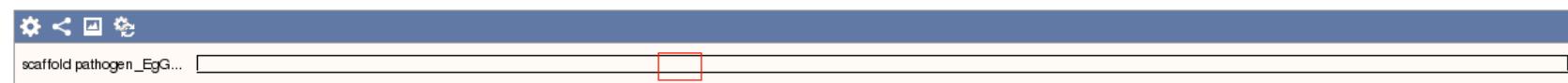
15:20 - 16:00 (Bruce)


Variant Effect Predictor: Practical exercises

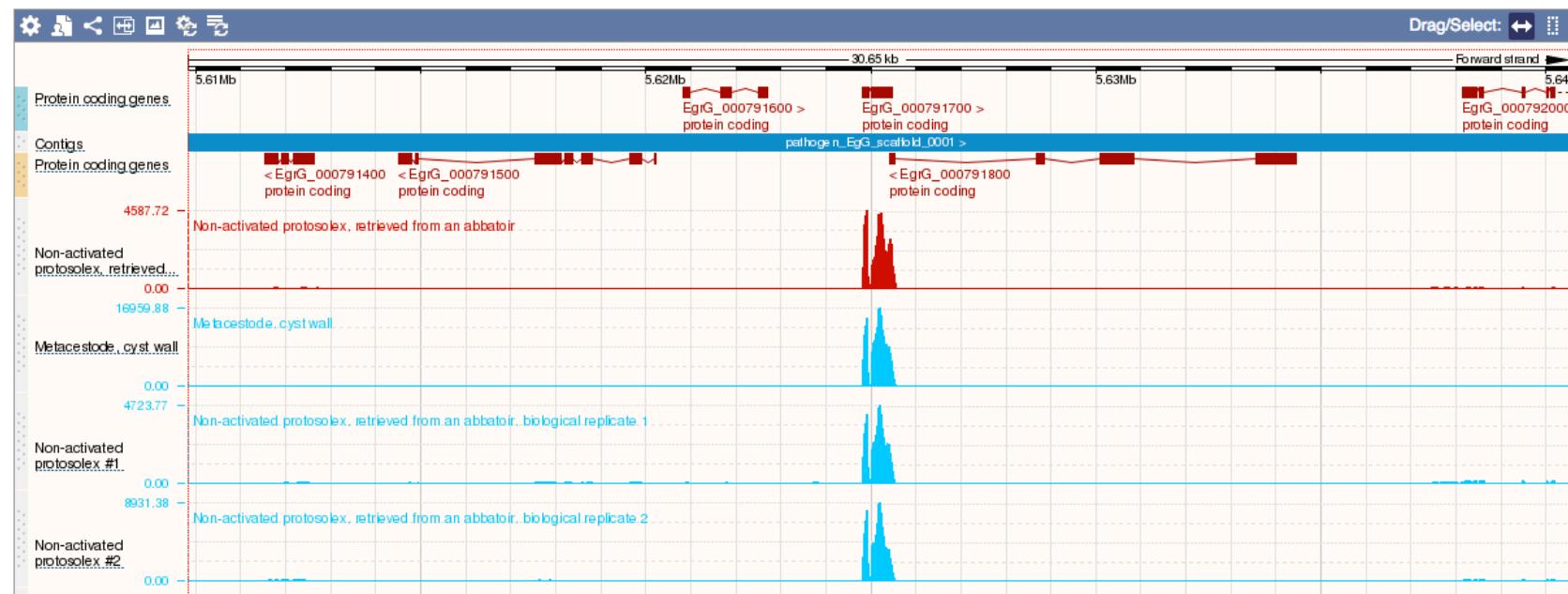
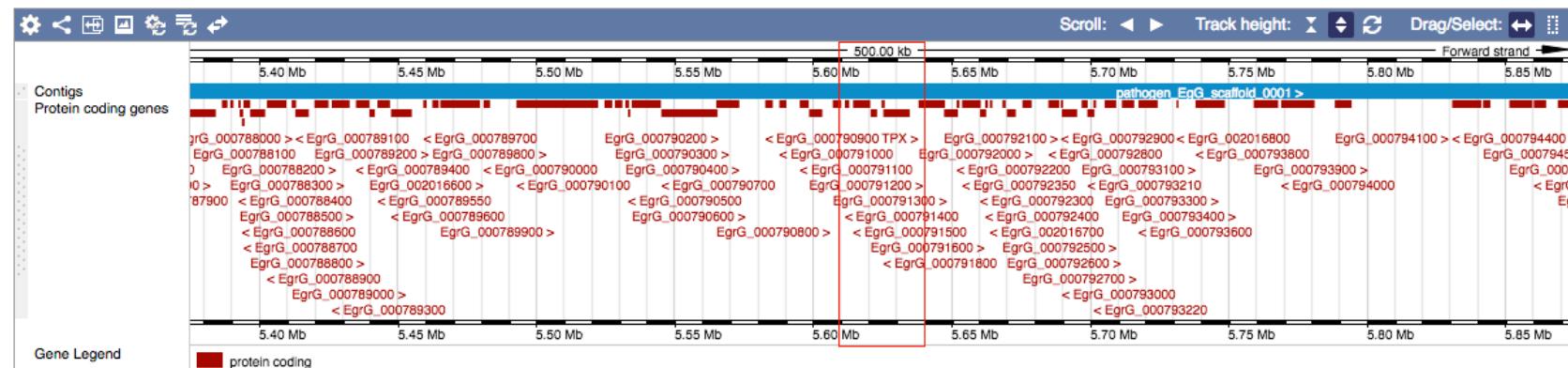
16:00 - 16:30

Q&A Session



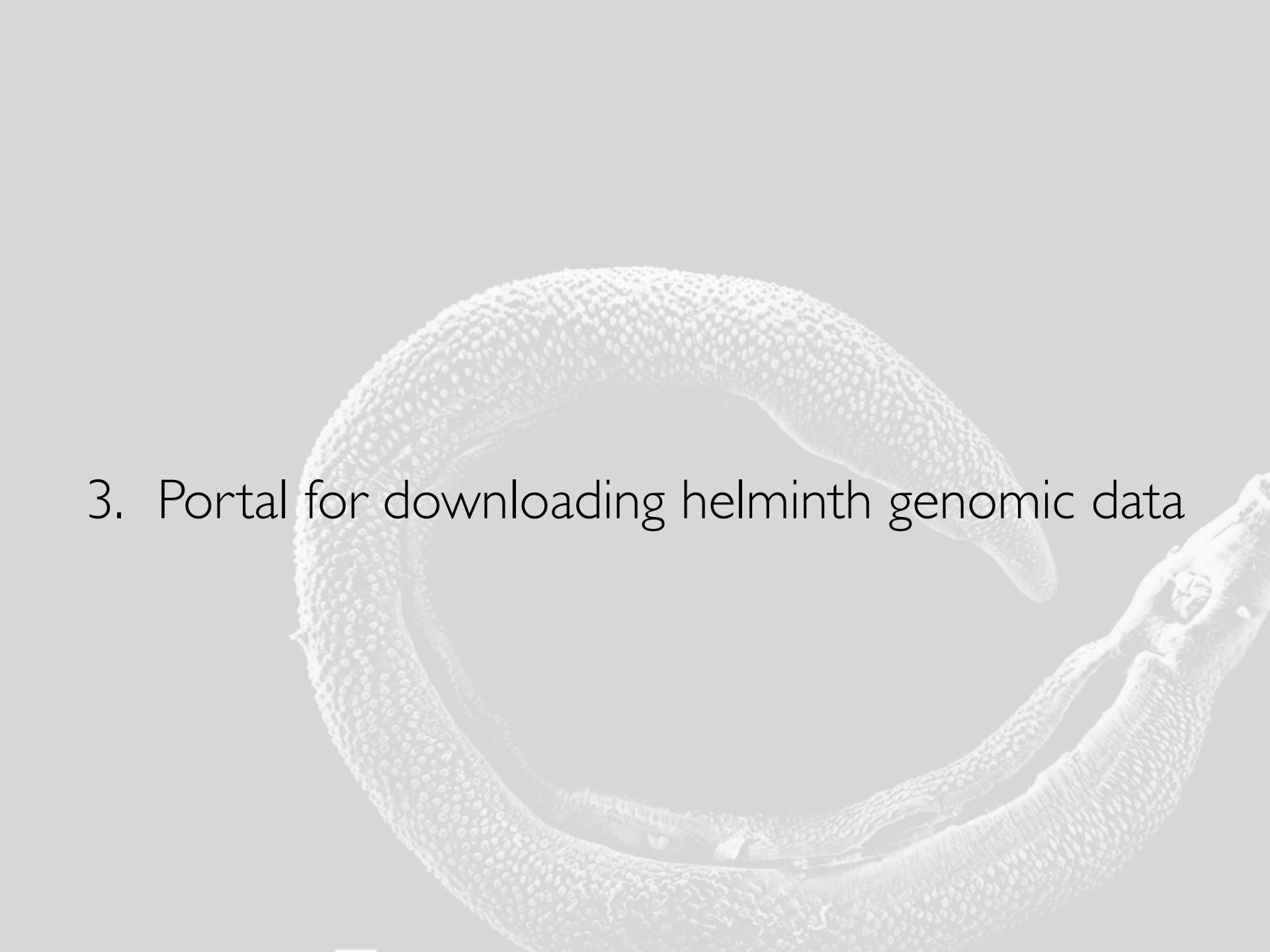

Feedback forms





# What is WormBase ParaSite?

# I. Genome browser for helminth species

# Scaffold pathogen\_EgG\_scaffold\_0001: 5,609,817-5,640,467




## Region in detail ?





2. Set of tools for interacting with helminth genomes



3. Portal for downloading helminth genomic data



Where does the data come from?

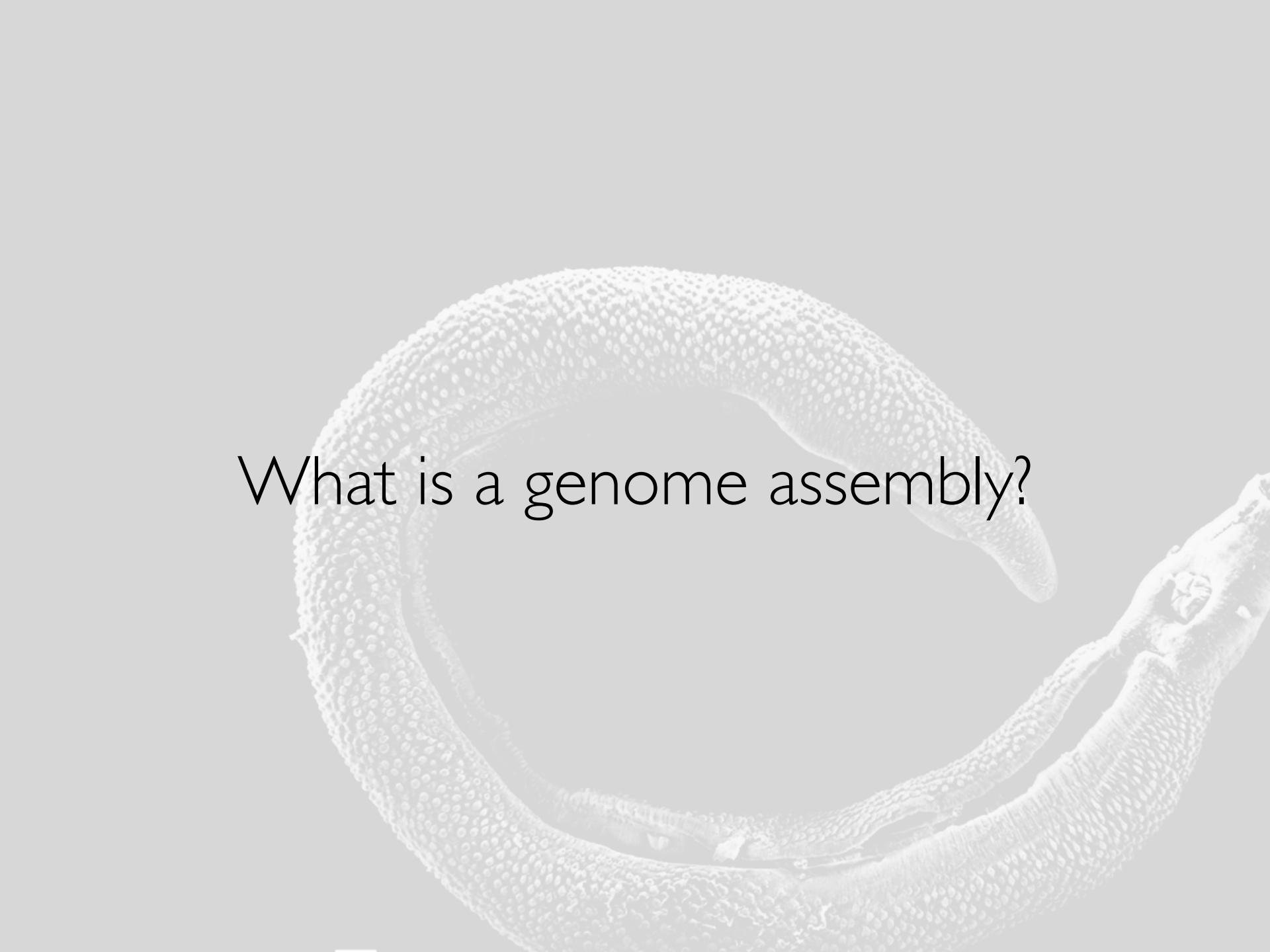
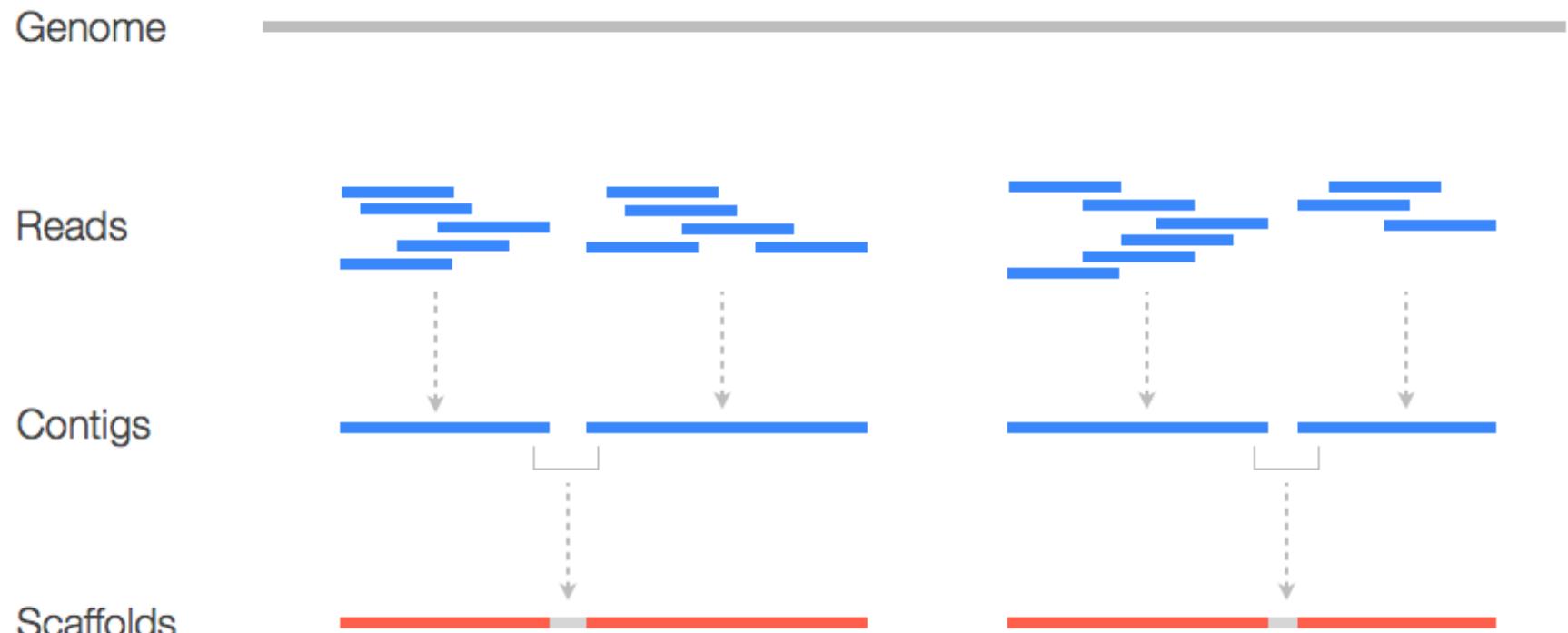



Image credit: [brickdisplaycase.com](http://brickdisplaycase.com)




What data does WormBase ParaSite  
contain?

- Genomic:
  - protein-coding genes
  - transcripts
  - proteins
- Transcriptomic
- ncRNAs
- Variation (coming soon)




What is a genome assembly?

# Genome assembly





# Genome annotation





How can the data be accessed?

There are various ways for interacting with data in ParaSite:

- genome browser
- BLAST
- BioMart (data export)
- VEP
- REST API



Where is WormBase ParaSite  
developed?

- Joint project between Wellcome Trust Sanger Institute and WormBase team at EMBL-EBI
- BBSRC-funded
- Based on ENSEMBL technology

# Acknowledgements

- Matt Berriman
- Kevin Howe
- Paul Kersey
- Myriam Shafie

- Data providers



# Using the website

# Summary

1. Searching
2. Finding genomes
3. Navigating genes, transcripts and scaffolds
4. Comparative genomics
5. RNASeq data tracks
6. Adding your own data tracks
7. User accounts

# I. Searching



# Searching



## Find a genome

[+] Nematoda (Roundworms)

[+] Platyhelminthes (Flatworms)

## Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

Release 6 - April 2016

EMBL-EBI  sanger 





WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

Search WormBase ParaSite...

e.g. *O. volvulus* PRJNA60051, WBGene00262434, *Bmz-est-4*, *est-4*, or *metalloloenidase*

Login Register Help and Documentation

## Announcements

### Announcing WormBase ParaSite release 6

posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

## Blog

### Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness

posted 1 month ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnach, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

### *Brugia malayi* assembly update

posted 2 months ago

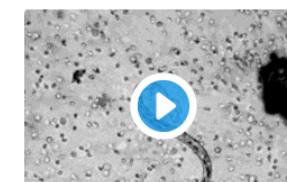
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

### Register for a WormBase ParaSite workshop

posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]


## Twitter

### Tweets by @WBParasite

WormBase ParaSite Retweeted



Science @scienmag  
White blood cells attacking a parasite.  
pic.twitter.com/zqAIUZMYDX



12 Jun

WormBase ParaSite Retweeted



eLife - the journal @eLife

Embed

View on Twitter

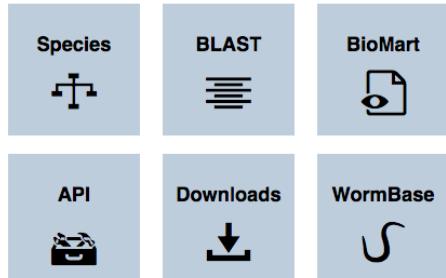
## Information

[Help and Documentation](#)

[Citing WormBase ParaSite](#)

[About WormBase ParaSite](#)

[Data Usage](#)


[Contact Us](#)

[Disclaimer](#)

# Searching

## WormBase ParaSite Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase



### Find a genome

- [+] Nematoda (Roundworms)
- [+] Platyhelminthes (Flatworms)

### Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

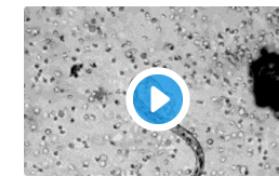
Release 6 - April 2016



WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

cyst

**SUGGESTED TERM**


- cystathione
- cystatin
- cysteine
- cysteines
- cystinosin

Tweets by @WBParasite

WormBase ParaSite Retweeted



White blood cells attacking a parasite.  
pic.twitter.com/zqAUZMYDx



12 Jun

WormBase ParaSite Retweeted



eLife - the journal  
@eLife

Embed

[View on Twitter](#)

### Information

- [Help and Documentation](#)
- [Citing WormBase ParaSite](#)
- [About WormBase ParaSite](#)
- [Data Usage](#)
- [Contact Us](#)
- [Disclaimer](#)

# Searching

**WormBase ParaSite** Version: WBPS6 (WS252)

Search WormBase ParaSite... 

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase

Login Register Help and Documentation

**New Search**

Search WormBase ParaSite

- New Search
- Gene (485)
  - WormBase ParaSite (480)
  - WormBase (5)

**Configure this page**

**Add your data**

**Export data**

**Share this page**

**Bookmark this page**

Filter by species:

**Search results for 'cystatin'**

Showing 1-10 of 480 Genes found in WormBase ParaSite

**EEL\_0000399501**

Description *Cystatin* [Source:UniProtKB/TrEMBL;Acc:A0A0R3RQN0]  
Gene ID [EEL\\_0000399501](#)  
Species *Elaeophora elaphi* ([PRJEB502](#))  
Location [EEL\\_scaffold0000034:53318-53512](#)  
Gene tree [View gene tree](#)

**ALUE\_0002323401**

Description *Cystatin* [Source:UniProtKB/TrEMBL;Acc:A0A0M3IWV6]  
Gene ID [ALUE\\_0002323401](#)  
Species *Ascaris lumbricoides* ([PRJEB4950](#))  
Location [ALUE\\_scaffold0008948:353-2918](#)  
Gene tree [View gene tree](#)

**HPLM\_0001052101**

Description *Cystatin* [Source:UniProtKB/TrEMBL;Acc:A0A0N4WHX7]  
Gene ID [HPLM\\_0001052101](#)  
Species *Haemonchus placei* ([PRJEB509](#))  
Location [HPLM\\_scaffold0001226:46905-48974](#)  
Gene tree [View gene tree](#)  
*C. elegans* orthologues [cpi-2](#) [cpi-1](#)

**BPAG\_0000497001**

Description *Cystatin* [Source:UniProtKB/TrEMBL;Acc:A0A0N4T9T3]  
Gene ID [BPAG\\_0000497001](#)  
Species *Brugia pahangi* ([PRJEB497](#))  
Location [BPAG\\_contig0002942:40-2465](#)  
Gene tree [View gene tree](#)



# Searching

# WormBase ParaSite

[Species List](#)
[BLAST](#)
[BioMart](#)
[REST API](#)

[New Search](#)

Search WormBase ParaSite

- New Search
- Gene (485)
- WormBase ParaSite (480)
- WormBase (5)

Search results

Showing 1-10 of 480

Configure this page

Add your data

Export data

Share this page

Bookmark this page

**EEL\_0000395**

Description

Gene ID

Species

Location

Gene tree

**ALUE\_00023**

Description

Gene ID

Species

Location

Gene tree

**HPLM\_00010**

Description

Gene ID

Species

Location

Gene tree

*C. elegans* orthologs

**BPAG\_00004**

Description

Gene ID

Species

Location

Gene tree

*Myiostilpidae* (PRJEB2244)

*Hymenolepis diminuta* (PRJEB507)

*Hymenolepis microstoma* (PRJEB124)

*Hymenolepis nana* (PRJEB508)

*Litomosoides sigmodontis* (PRJEB3075)

*Loa loa* (PRNA246086)

*Loa loa* (PRNA60051)

*Meloidogyne floridensis* (PRJEB6016)

*Meloidogyne hapla* (PRNA29083)

*Mesocestoides corti* (PRJEB510)

*Necator americanus* (PRNA72135)

*Nippostrongylus brasiliensis* (PRJEB511)

*Oesophagostomum dentatum* (PRNA72579)

*Onchocerca flexuosa* (PRJEB512)

*Onchocerca ochengi* (PRJEB1204)

*Onchocerca ochengi* (PRJEB1809)

*Oncocerca volvulus* (PRJEB513)

*Opisthorchis viverrini* (PRNA222628)

*Panagrellus redivivus* (PRNA186477)

*Parastrephylloides trichosuri* (PRJEB515)

*Pristionchus expectatus* (PRJEB6009)

*Pristionchus pacificus* (PRNA12644)

*Protopolyystoma xenopodis* (PRJEB1201)

*Rhabditophanes* sp. KR3021 (PRJEB1297)

*Romanomermis culicivorax* (PRJEB1358)

*Schistocerca solidus* (PRJEB527)

*Schistosoma haematobium* (PRNA728265)

*Schistosoma japonicum* (PRIEA34885)

*Schistosoma mansoni* (PRIEA36577)

*Schistosoma margebowiei* (PRJEB522)

*Schistosoma rodhaini* (PRJEB526)

*Schmidtea mediterranea* (PRNA12585)

*Soboliphyme baturini* (PRJEB516)

*Spirometra erinaceieuropaei* (PRJEB1202)

*Steinernema carpocapsae* (PRNA202318)

*Steinernema feltiae* (PRNA204661)

*Steinernema glaseri* (PRNA204943)

*Steinernema monticolum* (PRNA205067)

*Steinernema scapterisci* (PRNA204942)

*Strongyloides papillosus* (PRJEB525)

**Strongyloides ratti** (PRJEB125)

*Strongyloides stercoralis* (PRJEB528)

*Strongyloides venezuelensis* (PRJEB530)

*Strongylus vulgaris* (PRJEB531)

*Syphacia muris* (PRJEB524)

*Taenia asiatica* (PRJEB532)

*Taenia solium* (PRNA170813)

*Teladorsagia circumincta* (PRNA72569)

*Thelazia callipaeda* (PRJEB1205)

*Toxocara canis* (PRJEB533)

*Trichinella nativa* (PRNA179527)

*Trichinella spiralis* (PRNA12603)

*Trichuris muris* (PRJEB126)

**Trichuris suis** (PRNA179528)

*Trichuris suis* (PRNA208415)

*Trichuris suis* (PRNA208416)

*Trichuris trichiura* (PRJEB535)

*Wuchereria bancrofti* (PRJEB536)

Search WormBase ParaSite...

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, *Bm-aat-4*, *eat-4* or metallopeptidase

[Login](#) [Register](#) [Help and Documentation](#)

# Searching

**WormBase ParaSite** Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase

Search WormBase ParaSite... 

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Login Register Help and Documentation

**New Search**

Search WormBase ParaSite

- New Search
- Gene (485)
  - WormBase ParaSite (480)
  - WormBase (5)

**Configure this page**

**Add your data**

**Export data**

**Share this page**

**Bookmark this page**

**Search results for 'cystatin'**

Showing 6 Genes found in WormBase ParaSite (filtered)

Filtered by species: *Strongyloides ratti* (PRJEB125) 

**SRAE\_2000370000** [ WBGene00263925 ]

Description Proteinase inhibitor I25, *cystatin* domain-containing protein [Source:UniProtKB/TrEMBL;Acc:A0A090LLJ9]  
Gene ID WBGene00263925  
Species *Strongyloides ratti* (PRJEB125)  
Location SRAE\_chr2:11581338-11581697  
[View region in WormBase JBrowse]  
Gene tree [View gene tree](#)  
*C. elegans* orthologues cpi-2 , cpi-1 

**SRAE\_2000495700** [ WBGene00265204 ]

Description Proteinase inhibitor I25, *cystatin* domain-containing protein [Source:UniProtKB/TrEMBL;Acc:A0A090LQ75]  
Gene ID WBGene00265204  
Species *Strongyloides ratti* (PRJEB125)  
Location SRAE\_chr2:15634295-15634777  
[View region in WormBase JBrowse]  
Gene tree [View gene tree](#)

**SRAE\_X000107250** [ WBGene00266636 ]

Description Proteinase inhibitor I25, *cystatin* domain-containing protein [Source:UniProtKB/TrEMBL;Acc:A0A090KVQ2]  
Gene ID WBGene00266636  
Species *Strongyloides ratti* (PRJEB125)  
Location SRAE\_chRX\_scaffold2:377256-379294  
[View region in WormBase JBrowse]

**SRAE\_2000523500** [ WBGene00265495 ]

Description Proteinase inhibitor I25, *cystatin* domain-containing protein [Source:UniProtKB/TrEMBL;Acc:A0A090LLL2]  
Gene ID WBGene00265495  
Species *Strongyloides ratti* (PRJEB125)  
Location SRAE\_chr2:16571628-16571924  
[View region in WormBase JBrowse]

# Searching

UniProtKB

UniProtKB Advanced Search

BLAST Align Retrieve/ID mapping Help Contact

Basket 2

## UniProtKB - G4VBC8 (G4VBC8\_SCHMA)

Display

Entry Feature viewer Feature table

Function Names & Taxonomy PTM / Processing Structure Family & Domains Sequence Cross-references Publications Entry information Miscellaneous Similar proteins

None

Submitted name: **Putative cystatin**

Gene: **Smp\_034420.1**

Organism: *Schistosoma mansoni* (Blood fluke)

Status: Unreviewed - Annotation score: 00000 - Protein predicted

### Function

GO - Molecular function: cysteine-type endopeptidase inhibitor activity (Source: InterPro)

Complete GO annotation...

### Names & Taxonomy

Protein names: Submitted name: Putative cystatin Imported

Gene names: ORF Names: Smp\_034420.1 Imported

Organism: Schistosoma mansoni (Blood fluke) Imported

Taxonomic identifier: 6183 [NCBI]

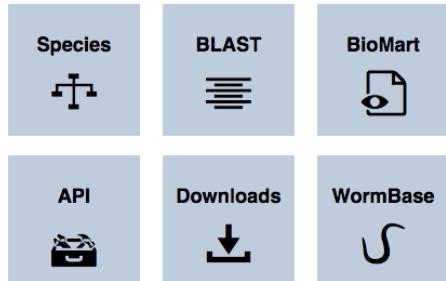
Taxonomic lineage: Eukaryota > Metazoa > Platyhelminthes > Trematoda > Digenea > Strigeida > Schistosomatoidea > Schistosomatidae > Schistosoma

Proteomes: UP000008854 Component: Chromosome 2

### PTM / Processing

Molecule processing

| Feature key | Position(s) | Length | Description | Graphical view | Feature identifier | Actions |
|-------------|-------------|--------|-------------|----------------|--------------------|---------|
|-------------|-------------|--------|-------------|----------------|--------------------|---------|


# Searching

G4VBC8



ac. O. volvulus PRINA60051 WRGene00282434 Bma-act-4 act-4 or metalloendopeptidase

Login Register Help and Documentation



## Announcements

### Announcing WormBase ParaSite release 6

posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

## Blog

### Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness

posted 1 month ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [..]

### *Brugia malayi* assembly update

posted 2 months ago

The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [..]

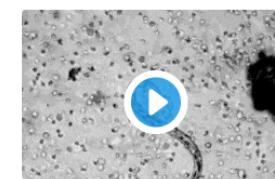
### Register for a WormBase ParaSite workshop

posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]

## Twitter


### Tweets by @WBParasite

WormBase ParaSite Retweeted



Science  
@scienmag

White blood cells attacking a parasite.  
pic.twitter.com/zqAlUZMYDx



12 Jun

WormBase ParaSite Retweeted



eLife - the journal  
@eLife

Embed

View on Twitter

Release 6 - April 2016



eEmpowered



WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

## Information

[Help and Documentation](#)

[Citing WormBase ParaSite](#)

[About WormBase ParaSite](#)

[Data Usage](#)

[Contact Us](#)

[Disclaimer](#)

# Searching

**WormBase ParaSite** Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase

Search WormBase ParaSite...  Search

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bra-eat-4, eat-4 or metallopeptidase

Login Register Help and Documentation

**New Search**

Search WormBase ParaSite

- New Search
- Gene (1)
  - WormBase ParaSite (1)
  - WormBase (0)

**Configure this page**

**Add your data**

**Export data**

**Share this page**

**Bookmark this page**

**Search results for 'G4VBC8'**

Showing 1 Gene found in WormBase ParaSite

**Smp\_034420**

|             |                                                               |
|-------------|---------------------------------------------------------------|
| Description | DIF_6; Putative cystatin [Source:UniProtKB/TrEMBL;Acc:B8Y6H4] |
| Gene ID     | <a href="#">Smp_034420</a>                                    |
| Species     | <i>Schistosoma mansoni</i> (PRJEA36577)                       |
| Location    | <a href="#">Smp.Chr_2:7321609-7322171</a>                     |
| Gene tree   | <a href="#">View gene tree</a>                                |

---

Information

Help and Documentation

Citing WormBase ParaSite

About WormBase ParaSite

Data Usage

Contact Us

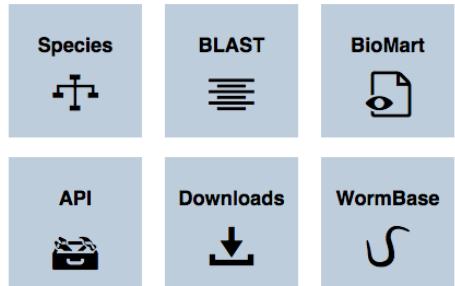
Disclaimer

Release 6 - April 2016

EMBL-EBI    

WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

## 2. Finding genomes


# Finding a genome

Search WormBase ParaSite...



e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Login Register Help and Documentation



## Find a genome

[+] Nematoda (Roundworms)

[+] Platyhelminthes (Flatworms)

## Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

## Announcements

### Announcing WormBase ParaSite release 6

posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

## Blog

### Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness

posted 1 month ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [..]

### *Brugia malayi* assembly update

posted 2 months ago

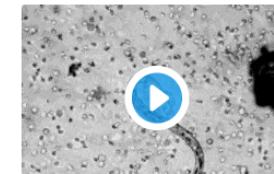
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [..]

### Register for a WormBase ParaSite workshop

posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]


## Twitter

### Tweets by @WBParasite

WormBase ParaSite Retweeted

Science  
@scienmag

White blood cells attacking a parasite.  
pic.twitter.com/zqAIUZMYDx



12 Jun

WormBase ParaSite Retweeted

eLife - the journal  
@eLife

Embed

View on Twitter

Release 6 - April 2016



WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

## Information

- Help and Documentation
- Citing WormBase ParaSite
- About WormBase ParaSite
- Data Usage
- Contact Us
- Disclaimer

# Finding a genome



## Find a genome

[+] Nematoda (Roundworms)

[+] Platyhelminthes (Flatworms)

## Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

## Announcements

### Announcing WormBase ParaSite release 6

posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

## Blog

### Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness

posted 1 month ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [..]

### *Brugia malayi* assembly update

posted 2 months ago

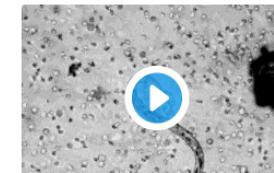
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [..]

### Register for a WormBase ParaSite workshop

posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]


## Twitter

### Tweets by @WBParasite

WormBase ParaSite Retweeted

Science  
@scienmag

White blood cells attacking a parasite.  
pic.twitter.com/zqAIUZMYDx



12 Jun

WormBase ParaSite Retweeted

eLife - the journal  
@eLife

Embed

View on Twitter

## Information

- Help and Documentation
- Citing WormBase ParaSite
- About WormBase ParaSite
- Data Usage
- Contact Us
- Disclaimer

# Finding a genome

**WormBase ParaSite** Version: WBPS6 (WS252)

[Species List](#) [BLAST](#) [BioMart](#) [REST API](#) [VEP](#) [Downloads](#) [WormBase](#)

[Search WormBase ParaSite...](#) 

[Login](#) [Register](#) [Help and Documentation](#)

**Species** 

**BLAST** 

**BioMart** 

**API** 

**Downloads** 

**WormBase** 

**Announcements**

[Announcing WormBase ParaSite release 6](#)  
posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

[Featured Paper: Glucose and Glycogen Metabolism in \*B. malayi\* Is Associated with Wolbachia Symbiont Fitness](#)  
posted 1 month ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin , Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [\[...\]](#)

[Brugia malayi assembly update](#)  
posted 2 months ago

The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [\[...\]](#)

[Register for a WormBase ParaSite workshop](#)  
posted 2 months ago

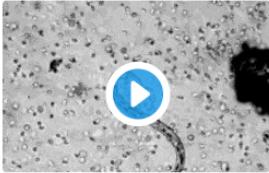
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[\[Older\]](#)

**Find a genome**

[\[+\] Nematoda \(Roundworms\)](#)

[\[+\] Platyhelminthes \(Flatworms\)](#)


**Statistics**

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

**Twitter**

Tweets by @WBParasite

 [Science](#) [@scienmag](#)  
White blood cells attacking a parasite.  
pic.twitter.com/zqAIUZMYDx



[View on Twitter](#)

 [eLife - the journal](#) [@eLife](#)

[Embed](#) [View on Twitter](#)

Release 6 - April 2016

EMBL-EBI    

WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

**Information**

[Help and Documentation](#) [Citing WormBase ParaSite](#) [About WormBase ParaSite](#) [Data Usage](#) [Contact Us](#) [Disclaimer](#)

# Finding a genome

**WormBase ParaSite** Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase

Search WormBase ParaSite... 

Login Register Help and Documentation

**Species** 

**BLAST** 

**BioMart** 

**API** 

**Downloads** 

**WormBase** 

**Find a genome**

[+] **Nematoda (Roundworms)**

[+] **Platyhelminthes (Flatworms)**

**Statistics**

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

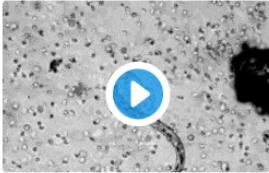
**Announcements**

**Announcing WormBase ParaSite release 6**  
posted 2 months ago  
We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  
posted 1 month ago  
We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

**Brugia malayi assembly update**  
posted 2 months ago  
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]


**Register for a WormBase ParaSite workshop**  
posted 2 months ago  
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]

**Twitter**

Tweets by @WBParasite

WormBase ParaSite Retweeted  @scienmag  
White blood cells attacking a parasite. pic.twitter.com/zqAIUZMYDx



12 Jun

WormBase ParaSite Retweeted  eLife - the journal @eLife

Embed View on Twitter

Release 6 - April 2016

EMBL-EBI    

WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

**Information**

Help and Documentation  
Citing WormBase ParaSite  
About WormBase ParaSite  
Data Usage  
Contact Us  
Disclaimer

## Species List

## Contents

[Nematoda \(80\)](#)  
[Platyhelminthes \(29\)](#)

## Nematoda

| Species Name                                  | Provider                                                  | Assembly                          | BioProject ID               | Taxonomy ID            |
|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------|-----------------------------|------------------------|
| <a href="#">Acanthocheilonema viteae</a>      | <a href="#">University of Edinburgh</a>                   | nAv.1.0                           | <a href="#">PRJEB4306</a>   | <a href="#">6277</a>   |
| <a href="#">Ancylostoma caninum</a>           | <a href="#">Genome Institute at Washington University</a> | A_caninum_9.3.2.ec.cg.pg          | <a href="#">PRJNA72585</a>  | <a href="#">29170</a>  |
| <a href="#">Ancylostoma ceylanicum</a>        | <a href="#">Cornell University</a>                        | Acey_2013.11.30.genDNA            | <a href="#">PRJNA231479</a> | <a href="#">53326</a>  |
| <a href="#">Ancylostoma ceylanicum</a>        | <a href="#">Genome Institute at Washington University</a> | A_ceylanicum1.3.ec.cg.pg          | <a href="#">PRJNA72583</a>  | <a href="#">53326</a>  |
| <a href="#">Ancylostoma duodenale</a>         | <a href="#">Genome Institute at Washington University</a> | A_duodenale_2.2.ec.cg.pg          | <a href="#">PRJNA72581</a>  | <a href="#">51022</a>  |
| <a href="#">Angiostrongylus cantonensis</a>   | <a href="#">Wellcome Trust Sanger Institute</a>           | A_cantonensis_Taipei_v1_5_4       | <a href="#">PRJEB493</a>    | <a href="#">6313</a>   |
| <a href="#">Angiostrongylus costaricensis</a> | <a href="#">Wellcome Trust Sanger Institute</a>           | A_costaricensis_Costa_Rica_v1_5_4 | <a href="#">PRJEB494</a>    | <a href="#">334426</a> |
| <a href="#">Anisakis simplex</a>              | <a href="#">Wellcome Trust Sanger Institute</a>           | A_simplex_v1_5_4                  | <a href="#">PRJEB496</a>    | <a href="#">6269</a>   |
| <a href="#">Ascaris lumbricoides</a>          | <a href="#">Wellcome Trust Sanger Institute</a>           | A_lumbricoides_Ecuador_v1_5_4     | <a href="#">PRJEB4950</a>   | <a href="#">6252</a>   |
| <a href="#">Ascaris suum</a>                  | <a href="#">University of Colorado School of Medicine</a> | ASU_2.0                           | <a href="#">PRJNA62057</a>  | <a href="#">6253</a>   |
| <a href="#">Ascaris suum</a>                  | <a href="#">University of Melbourne</a>                   | AscSuum_1.0_submitted             | <a href="#">PRJNA80881</a>  | <a href="#">6253</a>   |
| <a href="#">Brugia malayi</a>                 | <a href="#">WormBase</a>                                  | Bmali-4.0                         | <a href="#">PRJNA10729</a>  | <a href="#">6279</a>   |
| <a href="#">Brugia pahangi</a>                | <a href="#">Wellcome Trust Sanger Institute</a>           | B_pahangi_Glasgow_v1_5_4          | <a href="#">PRJEB497</a>    | <a href="#">6280</a>   |
| <a href="#">Brugia timori</a>                 | <a href="#">Wellcome Trust Sanger Institute</a>           | B_timori_Indonesia_v1_0_4         | <a href="#">PRJEB4663</a>   | <a href="#">42155</a>  |
| <a href="#">Bursaphelenchus xylophilus</a>    | <a href="#">Wellcome Trust Sanger Institute</a>           | ASM23113v1_submitted              | <a href="#">PRJEA64437</a>  | <a href="#">6326</a>   |
| <a href="#">Caenorhabditis angaria</a>        | <a href="#">WormBase</a>                                  | 13mar2012                         | <a href="#">PRJNA51225</a>  | <a href="#">860376</a> |
| <a href="#">Caenorhabditis brenneri</a>       | <a href="#">WormBase</a>                                  | C_brenneri-6.0.1b                 | <a href="#">PRJNA20035</a>  | <a href="#">135651</a> |
| <a href="#">Caenorhabditis briggsae</a>       | <a href="#">WormBase</a>                                  | CB4                               | <a href="#">PRJNA10731</a>  | <a href="#">6238</a>   |
| <a href="#">Caenorhabditis elegans</a>        | <a href="#">WormBase</a>                                  | WBcel235                          | <a href="#">PRJNA13758</a>  | <a href="#">6239</a>   |
| <a href="#">Caenorhabditis japonica</a>       | <a href="#">WormBase</a>                                  | C_japonica-7.0.1                  | <a href="#">PRJNA12591</a>  | <a href="#">281687</a> |

# Genome pages

## WormBase ParaSite Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase

*Schistosoma mansoni* (PRJEA36577) ▾

Search WormBase ParaSite...



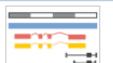
e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Login Register Help and Documentation

### ***Schistosoma mansoni***

BioProject PRJEA36577 | Data Source Wellcome Trust Sanger Institute | Taxonomy ID 6183

Search Schistosoma mansoni (PRJEA36577)...




#### About *Schistosoma mansoni*

The trematode *Schistosoma mansoni* is one of the three major infectious agents responsible for the chronic debilitating disease schistosomiasis found throughout Africa and South America. The intermediate host for the parasite is a freshwater snail from the genus *Biomphalaria*, and the definitive host is a human. Schistosomiasis is widely considered to be second only to malaria as a global health problem and an incalculable drain on the economic development of endemic countries.

#### Genome assembly: ASM23792v2

The *S. mansoni* reference genome was sequenced by a consortium led by the Wellcome Trust Sanger Institute, as described by [Berriman et al \(2009\)](#). The assembly version represented here is the v5.0 freeze from [GeneDB](#) (December 2013), published in [Protasio et al \(2012\)](#) and which corresponds with INSDC assembly [ASM23792v2](#).



Example region

#### Gene annotation

The gene predictions were initially made by a consortium led by the Wellcome Trust Sanger Institute, as described by [Berriman et al \(2009\)](#). The gene models have since been iteratively improved, and the version represented here is the v5.0 freeze from [GeneDB](#) (December 2013) and described in [Protasio et al \(2012\)](#).

What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs.



Example gene

#### Statistics

##### Summary

|                    |                                                 |
|--------------------|-------------------------------------------------|
| Assembly:          | ASM23792v2, GCA_000237925.2                     |
| Database version:  | 84.1                                            |
| Base Pairs:        | 362,511,929                                     |
| Genome Size:       | 364,538,298                                     |
| Data source:       | <a href="#">Wellcome Trust Sanger Institute</a> |
| Genebuild version: | 2014-05-WormBase                                |

##### Gene counts

|                   |        |
|-------------------|--------|
| Coding genes:     | 10,831 |
| Gene transcripts: | 11,828 |

#### Comparative genomics

What can I find? Orthologues, paralogues, and gene trees across multiple species.



Example gene tree

#### Downloads

- Genomic Sequence (FASTA)
- Hard-masked Genomic Sequence (FASTA)
- Soft-masked Genomic Sequence (FASTA)
- Annotations (GFF3)
- Proteins (FASTA)
- Full-length transcripts (FASTA)
- CDS transcripts (FASTA)

#### Key Publications


Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Masihiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Dijkeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM. [The genome of the blood fluke \*Schistosoma mansoni\*](#). *Nature*, 2009;460(7253):352-358

Protasio AV, Tsai JI, Babbage A, Nichol S, Hunt M, Aslett MA, De Silva N, Velarde GS, Anderson TJ, Clark RC, Davidson C, Dillon GP, Holroyd NE, LoVerde PT, Lloyd C, McQuillan J, Oliveira G, Otto TD, Parker-Manuel SJ, Quail MA, Wilson RA, Zerlotini A, Dunne DW, Berriman M. [A systematically improved high quality genome and transcriptome of the human blood fluke \*Schistosoma mansoni\*](#). *PLoS Negl Trop Dis*, 2012;6(1):e1455

#### Tools

- Search for sequences in the genome and proteome using BLAST
- Work with lists of data using the WormBase ParaSite BioMart data-mining tool
- Programmatically access WormBase ParaSite data using the REST API
- Predict the effects of variants using the Variant Effect Predictor

### 3. Navigating genes, transcripts and scaffolds



# Gene pages

## WormBase ParaSite

Species List BLAST BioMart REST API Downloads WormBase

Schistosoma mansoni (PRJEA365777) Location: Smp.Chr\_4:31,987,438-31,988,870 Gene: SAT1 Transcript: Smp\_090120.1

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-set-4, est-4 or metallopeptidase

Help and Documentation

**Gene-based displays**

- Summary
- Splice variants
- Sequence
- External references
- Ontology**
  - GO: biological process
  - GO: molecular function
  - GO: cellular component
- Comparative Genomics
- Gene tree
- Orthologues
- Paralogues

**Gene: SAT1 Smp\_090120.1**

**Description** Putative alpha tubulin (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VHT1]  
**Location** Scaffold Smp.Chr\_4: 31,987,438-31,988,870 reverse strand.  
**About this gene** This gene has 2 transcripts (splice variants), 358 orthologues and 4 paralogues.  
**Gene type** Protein coding  
**Annotation Method** Gene models from Wellcome Trust Sanger Institute Reference Helminth Genomes project  
**Transcripts** Hide transcript table

Show/hide columns (1 hidden) Filter

| Name  | Transcript ID | bp   | Protein | Translation ID | Biotype        | UniProt       |
|-------|---------------|------|---------|----------------|----------------|---------------|
| Novel | Smp_090120.1  | 1356 | 451aa   | Smp_090120.1   | Protein coding | G4VHT1 Q26595 |
| Novel | Smp_090120.2  | 1311 | 436aa   | Smp_090120.2   | Protein coding | G4VHT1        |

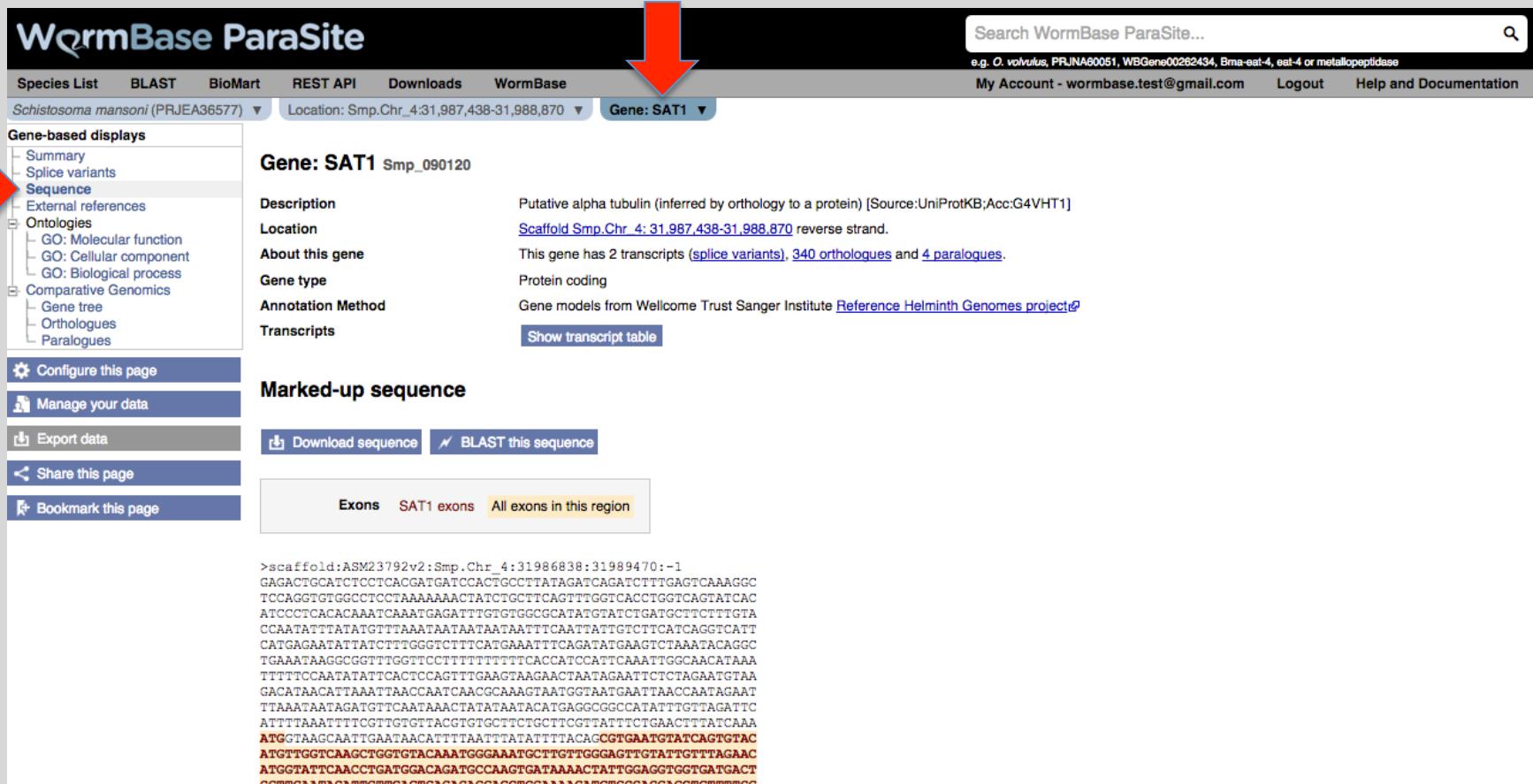
**Summary**

Go to [Region In Detail](#) for more tracks and navigation options (e.g. zooming)

**Configuring the display**

Tip: use the "Configure this page" link on the left to show additional data in this region.

Release 4 - November 2015




WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

## Information

[Help and Documentation](#)  
[About WormBase ParaSite](#)  
[Data Usage](#)  
[Contact Us](#)  
[Disclaimer](#)

# Viewing sequence



**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads WormBase

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA80051, WBGene00262434, Bmz-est-4, est-4 or metallopeptidase

My Account - wormbase.test@gmail.com Logout Help and Documentation

Schistosoma mansoni (PRJEA36577) Location: Smp.Chr\_4:31,987,438-31,988,870 Gene: SAT1

**Gene-based displays**

- Summary
- Splice variants
- Sequence**
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Comparative Genomics
- Gene tree
- Orthologues
- Paralogues

Configure this page

Manage your data

Export data

Share this page

Bookmark this page

**Gene: SAT1 Smp\_090120**

**Description** Putative alpha tubulin (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VHT1]

**Location** Scaffold Smp.Chr\_4: 31,987,438-31,988,870 reverse strand.

**About this gene** This gene has 2 transcripts ([splice variants](#)), [340 orthologues](#) and [4 paralogues](#).

**Gene type** Protein coding

**Annotation Method** Gene models from Wellcome Trust Sanger Institute [Reference Helminth Genomes project](#)

**Transcripts** [Show transcript table](#)

**Marked-up sequence**

[Download sequence](#) [BLAST this sequence](#)

Exons SAT1 exons All exons in this region

```
> scaffold:ASM23792v2:Smp.Chr_4:31986838:319894701-1
GAGACTGCATCTCCTCACGATGATCCACTGCCCTTATAGATCAGATCTTGAGTCAAAGGC
TCCAGGTGCGCTCTAAAAAAACTATCTGCTTCAGTTGGTCACCTGGTCAGTATCAC
ATCCCTACACAAATCAAAATGAGATTTGTCGGCCATATGATCTGATGCTTCTTGTAA
CCAATATTTATGTTAAATAATAATAATTTCAATTATGTCCTCATCAGGTCAATT
CATGAGAAATATTATCTTGGCTTTCATGAAAATTCAAGATATGAAGTCTAAATACAGGC
TGAATAAACCGGTTGGTTCTTTTTTCCACATCCATTCAAATTGCCAACATAAA
TTTTCCAAATATTCACCTCAGTTGAAGTAAAGACTTAAGAAATTCTGAAATGAA
GACATACATTAATAATTAACCAATCAACCCAAGAACTATGGTAATGAAATTACCAATAGAA
GACATACATTAATAATTAACCAATCAACCCAAGAACTATGGTAATGAAATTACCAATAGAA
TTAATAATAGATGTTCATATAACTATATAACATGAGGGGCCATATTGTTAGATTC
ATTTAAATTTCGTTGTTACGTTGCTGTTCTGTTGTTATTTGAACTTTATCAAA
ATGGTAAGCAATTGAATAACATTAACTTTAACAGCTGAAATGTATCACTGTCAC
ATGTTGTCAGCTGGTGTCACAAATGGAAATGGTTGGGAGTGTATTGTTAGAAC
ATGGTATTCACCTGATGGACAGATGCCAAGTGATAAAACTATGGAGGTGGTGATGACT
CGTTCAATACATTCTCAGTGAGACAGGAGCTGGAAAAACATGTGCCACGGCTGTTTCG
```

# Viewing sequence

## Marked-up sequence

[Download sequence](#) [BLAST this sequence](#)

[Exons](#) [SAT1 exons](#) [All exons in this region](#)

```
> scaffold:ASM23792v2:Smp.Chr_4:31986838:31989470:-1
GAGACTGCATCTCTCACGATGATCCACTGCCCTTATAGATCAGATCTTGTGACTCAAAGGC
TCCAGGTGTCGGCTCTAAAAAAACTATCTGCTCAGTTGGTCACCTGGTCAGTATCAC
ATCCCTCACACAAATGAGATTGGTGTGGCCCATATGTATCTGATGCTTCTTGT
CCAATATTATATGTTAAATAATAATAATTCAATTATGTCTCATCAGGTATT
CATGAGAAATATTATCTGGGCTTTCATGAAATTTCAGATTAAGCTAAATACAGGC
TGAATAAGCGGCTTGGCTTCTTTTTCACCATCCATTCAAATTGGCAACATAAA
TTTTCAATATATTCACTCCAGTTGAAGTAAGAACTATAAGAATTCTCTAGATGTAA
GACATAACATTAAATAACCAATCAACGCAAAGTAATGGTAATGAATTAAACCAATAGAAT
TTAAATAATAGATGTTCAATAAACATAATAATCATGAGCGGCCATTATTTGTTAGATTC
ATTTAAATTCTGGTGTGTTAGCTGTGCTCTGCTTATTCTGAACCTTATCAA
ATGCTAAGCAATTGAATAACATTAAATTATATTACAGCGTGAATGTTACGTGTAC
ATGTTGGTCAGGTGTCACAATGGAAATGCTGTTGGGAGTTGTTAGTGGAAAC
ATGGTATTCACACTGATGGACAGATCCAAGTGATAAAACTATTGGAGGTGTTGATGACT
CGTCACATACATTCTCAGTGAGACAGGGCTGGAAAACATGTGCCACGGCTTTCG
TAGATTAGAACCAACTGTAGTAGATGAAGTCCGAACCTGGAACTTATCTCAACTTTC
ATCCAGAACAAATTAACACTGGTAAGGGAGGATGCTCTAATAACATGTCCGGTCTT
ATCAATTGGGAAAGAATACTGGACTTATGTTGGATCTGATTCTCGAAGTGGTGTGACC
AGTGTACTGGACTTCAGGGTTCTGATTTCCTCATTCATTGGCGGTGTTACTGGTTCTG
GGTTCACATCTTACTGATGGAACGTTGTTGAGTTGGGATTATGCAA AAAAATCGAAATTGG
AGTTTCGCTGTGATCTGTCACACGATTGCTACAGCTGTGTTGAACCCATATAATTCCA
TTTGACTACACATAACACATTAGAACATTCTGACTGTGCTTCATGGTGAACAGGAGG
CCATTATGATATTCTGGTGAAGTTGGTCTTACTGAATTAAACATGTTTACAC
GGAATCTAGATATAGAGCGTCCAACTACACAAATTAAATCTGCTTAATTGGTCAAGATAG
TGAGTTCCATTACTGCATCACTGGCTTCGATGGTGTGCTAAATGTTGGGATTTGACGGAAAT
TCCAAACTAATCTGGTACCTTATCTCTGCTTACCTTCCGGTGGCTACCTATGCGACACAG
TAATTTCAGCTGAGAAAGCTTACCCAGGACCTGTAAGCGTTCAAGAAATCACAATGCA
GCTTCGAACCAAGCAAATCAGATGGTAAAGTGACCCCTGTCACGGCAAAATATGGGGT
GCTGTATGTTATCTGGTGTGATGTTGGGATTGGTGTGCTTACAGCTGCCCACAGGTTCAAGGTAGGTA
TAAAACCTACCAACCCAAACAGTTGGTCTGGGGTGAATTGGCAAAGATTCACCGTGTG
TCTGTATGTTGACTAATACACCGCAATAGCCGAACCTGGCGCGCTCTAGATCATAAAT
TTGATTGATGTTGACGAAACAGTGTGCTTGTACACTGGTATGTTGGTGAAGGTATGGAG
AGGGTGAATTCTGAGGGCTGTGAGATCTGGCCCACTTGAGGAAGATTACAGGGAGG
TCGGTGTGACACCGGTGATGGGGAGGGCGAAGGGGAAGGTGAAGAGTTAGGTTCAT
TTGTTTGAGTTGTTATGTTCTGGTTACTCGTCCATAATAACTTATCTTATAACTA
CTTGTGGTTTCTGGTGTGCAATGCTGTTGGAGTTTCCCTGTTGACGTCT
TAACTGTTGATAAGACTGACATTAATATAGGCTTTGATTAAGGTAAAGTTGCTTAAA
CAATTCCACTGGTGCACAGCAGCAACTAAACGTGACTAGATGCTTGGAAATGAATTA
```

Gene-based displays

- Summary
- Splice variants
- Sequence**
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Comparative Genomics
  - Gene tree
  - Orthologues
  - Paralogues



# GO terms

WormBase ParaSite

Species List BLAST BioMart REST API Downloads WormBase

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-est-4, est-4 or metallopeptidase

Login Register Help and Documentation

Schistosoma mansoni (PRJEA36577) ▾ Location: Smp.Chr\_4:31,987,438-31,988,870 Gene: SAT1

**Gene-based displays**

- Summary
- Splice variants
- Sequence
- External references
- Ontologies**
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Comparative Genomics
- Gene tree
- Orthologues
- Paralogues

**Gene: SAT1 Smp\_090120**

**Description** Putative alpha tubulin (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VHT1]

**Location** Scaffold Smp.Chr\_4: 31,987,438-31,988,870 reverse strand.

**About this gene** This gene has 2 transcripts (splice variants), 340 orthologues and 4 paralogues.

**Gene type** Protein coding

**Annotation Method** Gene models from Wellcome Trust Sanger Institute [Reference Helminth Genomes project](#)

**Transcripts** Hide transcript table

Show/hide columns (2 hidden) Filter

| Name  | Transcript ID                | bp   | Protein | Biotype        | UniProt       |
|-------|------------------------------|------|---------|----------------|---------------|
| Novel | <a href="#">Smp_090120.1</a> | 1356 | 451aa   | Protein coding | G4VHT1 Q26595 |
| Novel | <a href="#">Smp_090120.2</a> | 1311 | 436aa   | Protein coding | G4VHT1        |

**GO: Molecular function**

| Accession  | Term                                   | Evidence | Annotation Source             | Transcript IDs                                               | Actions                        |
|------------|----------------------------------------|----------|-------------------------------|--------------------------------------------------------------|--------------------------------|
| GO:0000166 | nucleotide binding                     | IEA      | UniProtKB/TrEMBL;Q26595;SCHMA | <a href="#">Smp_090120.1</a><br><a href="#">Smp_090120.2</a> | <a href="#">Search Biomart</a> |
| GO:0003924 | GTPase activity                        | IEA      | UniProtKB/TrEMBL;Q26595;SCHMA | <a href="#">Smp_090120.1</a><br><a href="#">Smp_090120.2</a> | <a href="#">Search Biomart</a> |
| GO:0005200 | structural constituent of cytoskeleton | IEA      | UniProtKB/TrEMBL;Q26595;SCHMA | <a href="#">Smp_090120.1</a><br><a href="#">Smp_090120.2</a> | <a href="#">Search Biomart</a> |
| GO:0005525 | GTP binding                            | IEA      | UniProtKB/TrEMBL;Q26595;SCHMA | <a href="#">Smp_090120.1</a><br><a href="#">Smp_090120.2</a> | <a href="#">Search Biomart</a> |



# Transcripts



Brugia malayi (PRJNA10729) ▾ Location: Bmal\_v3\_scaffold83:109,351-111,179 Gene: Bm97 Transcript: Bm97.2 [View at WormBase central](#)

**Transcript-based displays**

- Summary
- Sequence
  - Exons
  - cDNA
  - Protein
- External References
  - General identifiers
  - Ontology
- Protein Information
  - Protein summary
  - Domains & features
- External data

[Configure this page](#)

[Add your data](#)

[Export data](#)

[Share this page](#)

[Bookmark this page](#)

## Transcript: Bm97.2

**Description** Larval allergen [Source:UniProtKB/TrEMBL;Acc:Q8IS06]  
**Location** SuperContig Bmal\_v3\_scaffold83: 109,351-111,177 reverse strand.  
**About this transcript** This transcript has 5 exons and is annotated with 7 domains and features.  
**Gene** This transcript is a product of gene WBGene00220358 [Hide transcript table](#)

Show/hide columns (1 hidden) Filter

| Name   | Transcript ID | bp  | Protein | Translation ID | Biotype        | UniProt |
|--------|---------------|-----|---------|----------------|----------------|---------|
| Bm97.2 | Bm97.2        | 975 | 247aa   | Bm97.2         | Protein coding | Q8IS06  |
| Bm97.1 | Bm97.1        | 965 | 247aa   | Bm97.1         | Protein coding | Q8IS06  |

## Summary

Statistics: Exons: 5 Coding exons: 4 Transcript length: 975 bps Translation length: 247 residues  
Prediction Method: Protein-coding model imported from WormBase

Information

[Help and Documentation](#)  
[About WormBase ParaSite](#)  
[Data Usage](#)  
[Contact Us](#)  
[Disclaimer](#)

Release 4 - November 2015  
EMBL-EBI   
WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

# Transcripts

Brugia malayi (PRJNA10729) ▾ Location: Bmal\_v3\_scaffold83:109,351-111,179 Gene: Bm97 Transcript: Bm97.2

[View at WormBase central](#)

**Transcript-based displays**

- Summary
- Sequence
  - Exons
  - cDNA
  - Protein
- External References
  - General identifiers
  - Ontology
- Protein Information
  - Protein summary
  - Domains & features
- External data

**Transcript: Bm97.2**

**Description** Larval allergen [Source:UniProtKB/TrEMBL;Acc:[Q8IS06](#)]  
**Location** SuperContig Bmal\_v3\_scaffold83: 109,351-111,177 reverse strand.  
**About this transcript** This transcript has 5 exons and is annotated with 7 domains and features.  
**Gene** This transcript is a product of gene [WBGene00220358](#) [Hide transcript table](#)

Show/hide columns (1 hidden) Filter

| Name   | Transcript ID          | bp  | Protein               | Translation ID         | Biotype        | UniProt                |
|--------|------------------------|-----|-----------------------|------------------------|----------------|------------------------|
| Bm97.2 | <a href="#">Bm97.2</a> | 975 | <a href="#">247aa</a> | <a href="#">Bm97.2</a> | Protein coding | <a href="#">Q8IS06</a> |
| Bm97.1 | <a href="#">Bm97.1</a> | 965 | <a href="#">247aa</a> | <a href="#">Bm97.1</a> | Protein coding | <a href="#">Q8IS06</a> |

**Summary**

Reverse strand 1.83 kb

**Statistics** Exons: 5 Coding exons: 4 Transcript length: 975 bps Translation length: 247 residues  
**Prediction Method** Protein-coding model imported from [WormBase](#)

**Information**

Help and Documentation  
About WormBase ParaSite  
Data Usage  
Contact Us  
Disclaimer

Release 4 - November 2015  
EMBL-EBI      
WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

# protein domains

Transcript-based displays

- Summary
- Sequence
  - Exons
  - cDNA
  - Protein
- External References
  - General identifiers
- Protein Information
  - Protein summary
  - Domains & features

Protein summary

Protein domains for Bm7483.1

Bm7483

Transmembrane helix

Low complexity (Seq.)

Superfamily

Pfam

PROSITE profiles

PANTHER

Gene3D

Scale bar: 0 40 80 120 160 200 240 280 320 360 400 475

Statistics

Ave. residue weight: 109.833 g/mol  
Charge: 4.5  
Isoelectric point: 7.7239  
Molecular weight: 52,170.59 g/mol  
Number of residues: 475 aa

# Location

WormBase ParaSite  

Species List BLAST BioMart REST API Downloads WormBase

Brugia malayi (PRJNA10729) Location: Bm1\_v3\_scaffold83:109,351-111,179 Gene: Bm97 Transcript: Bm97.2

My Account - wormbase.test@gmail.com Logout Help and Documentation

**Transcript-based displays**

- Summary
- Sequence
  - Exons
  - cDNA
  - Protein
- External References
  - General identifiers
- Protein Information
  - Protein summary
  - Domains & features
- External data

[Configure this page](#)

[Manage your data](#)

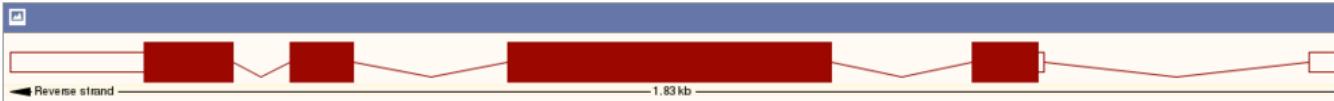
[Export data](#)

[Share this page](#)

[Bookmark this page](#)

**Transcript: Bm97.2** [\[View region in WormBase JBrowse\]](#) [\[View gene at WormBase central\]](#)

**Location** SuperContig Bm1\_v3\_scaffold83: 109,351-111,177 reverse strand.


**About this transcript** This transcript has [5 exons](#) and is annotated with [7 domains and features](#).

**Gene** This transcript is a product of gene [WBGene00220358](#) [Hide transcript table](#)

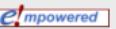
Show/hide columns (2 hidden)  

| Name   | Transcript ID          | bp  | Protein               | Biotype        | UniProt                                           |
|--------|------------------------|-----|-----------------------|----------------|---------------------------------------------------|
| Bm97.2 | <a href="#">Bm97.2</a> | 975 | <a href="#">247aa</a> | Protein coding | <a href="#">A0A0J9XM47</a> <a href="#">Q8IS06</a> |
| Bm97.1 | <a href="#">Bm97.1</a> | 965 | <a href="#">247aa</a> | Protein coding | <a href="#">A0A0J9XM47</a> <a href="#">Q8IS06</a> |

**Summary**



Reverse strand 1.83 kb


**Statistics** Exons: 5 Coding exons: 4 Transcript length: 975 bps Translation length: 247 residues

**Prediction Method** Protein-coding model imported from [WormBase](#)

**Information**

Help and Documentation  
Citing WormBase ParaSite  
About WormBase ParaSite  
Data Usage  
Contact Us  
Disclaimer

Release 5 - January 2016

EMBL-EBI    

WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

# Location view: zooming

Location: Bmal\_v3\_scaffold83:108,886-111,920 Gene: Bm97

SuperContig Bmal\_v3\_scaffold83: 74,678-76,964 [\[View region in WormBase JBrowse\]](#)

Region in detail

Contigs Protein coding genes

Gene Legend: protein coding

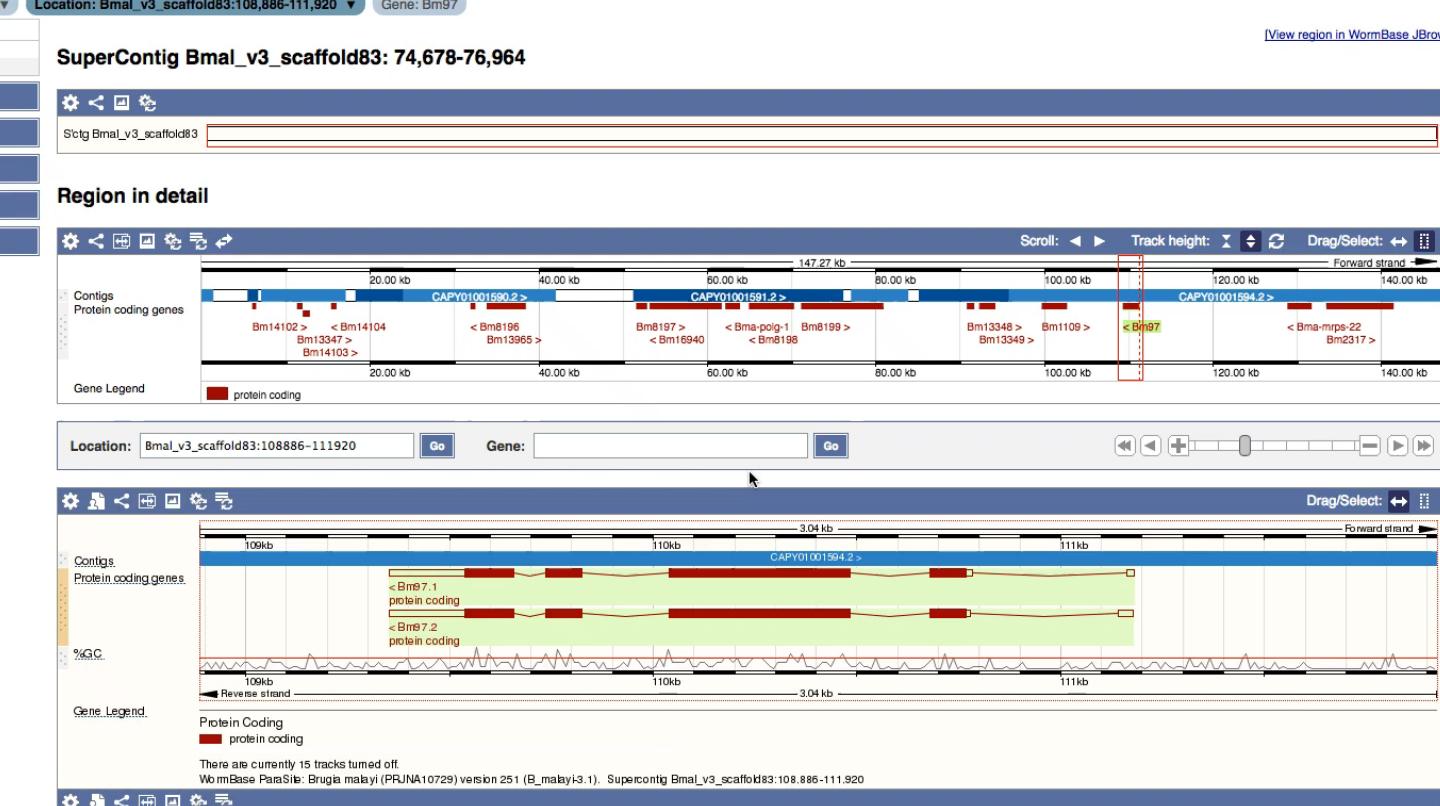
Location: Bmal\_v3\_scaffold83:108886-111920 Go Gene: Go

Contigs Protein coding genes

%GC

Gene Legend: Protein Coding protein coding

There are currently 15 tracks turned off.


WormBase ParaSite: Brugia malayi (PRJNA10729) version 251 (B\_malayi-3.1). Supercontig Bmal\_v3\_scaffold83:108,886-111,920

Information

Help and Documentation

Citing WormBase ParaSite

About WormBase ParaSite



# Viewing gene/transcript info in browser

WormBase ParaSite

Species List BLAST BioMart REST API Downloads WormBase

Brugia malayi (PRJNA10729) Location: Bmal\_v3\_scaffold83:51,712-147,279 Gene: Bm97

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bm-eat-4, eat-4 or metallopeptidase

Location-based displays  
Whole genome  
Region in detail

Configure this page  
Add your data  
Export data  
Share this page  
Bookmark this page

SuperContig Bmal\_v3\_scaffold83: 109,351-111,179

[View region in WormBase JBrowse] 

Region in detail

Contigs Protein coding genes

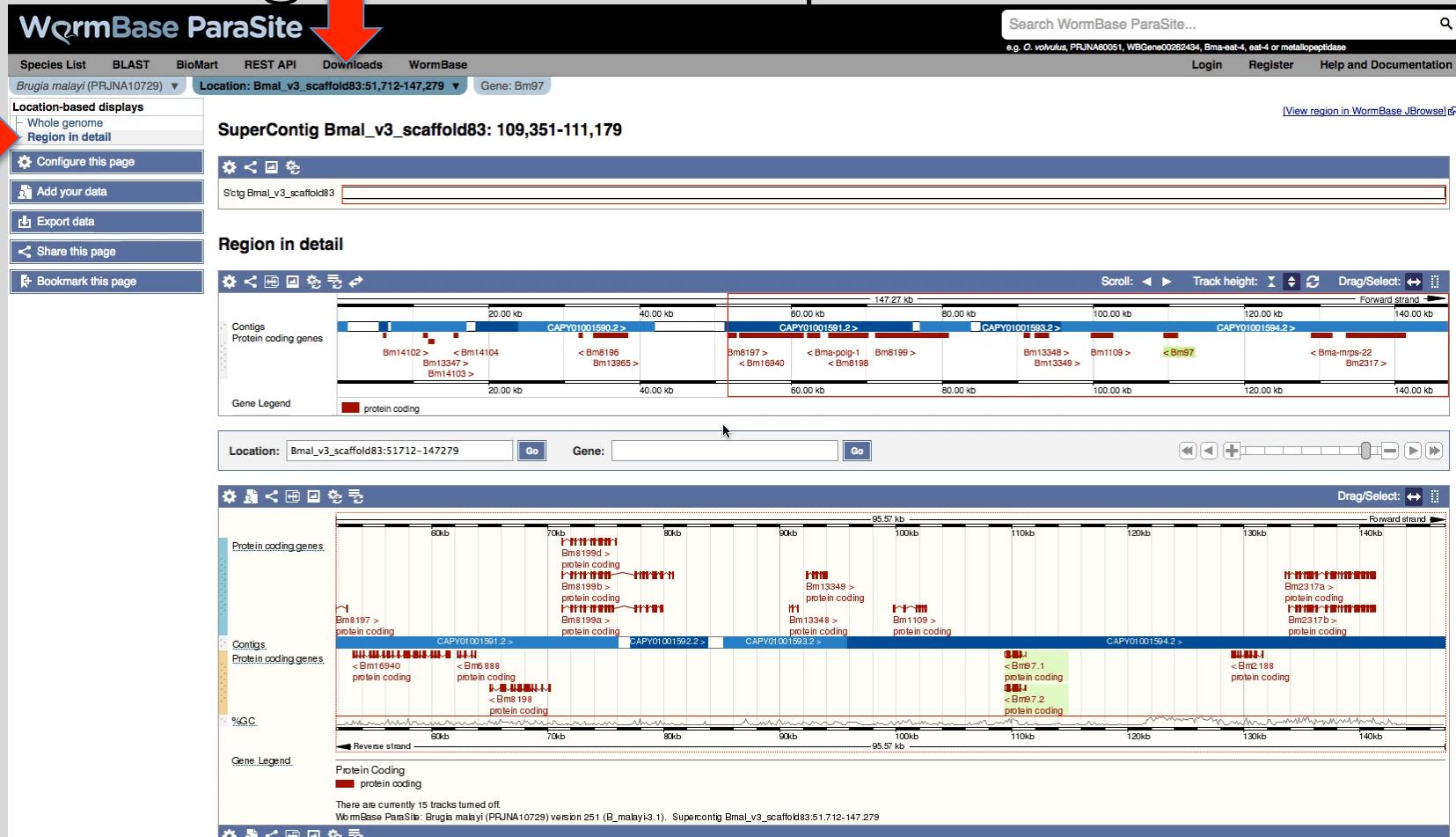
Location: Bmal\_v3\_scaffold83:51712-147279 Go Gene: Go

Drag/Select: 

Contigs Protein coding genes

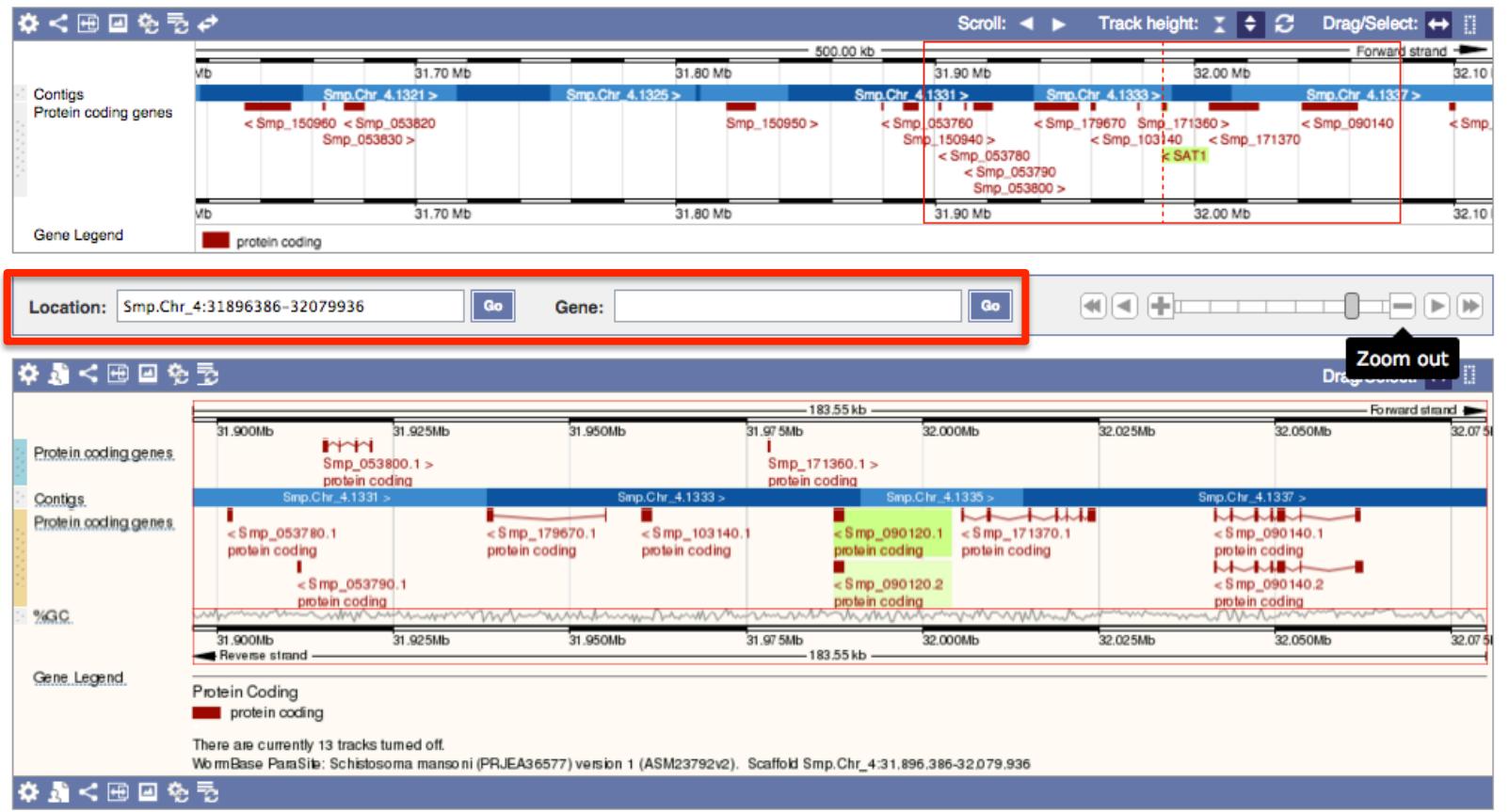
Location: Bmal\_v3\_scaffold83:51712-147279 Go Gene: Go

Drag/Select: 


Contigs Protein coding genes

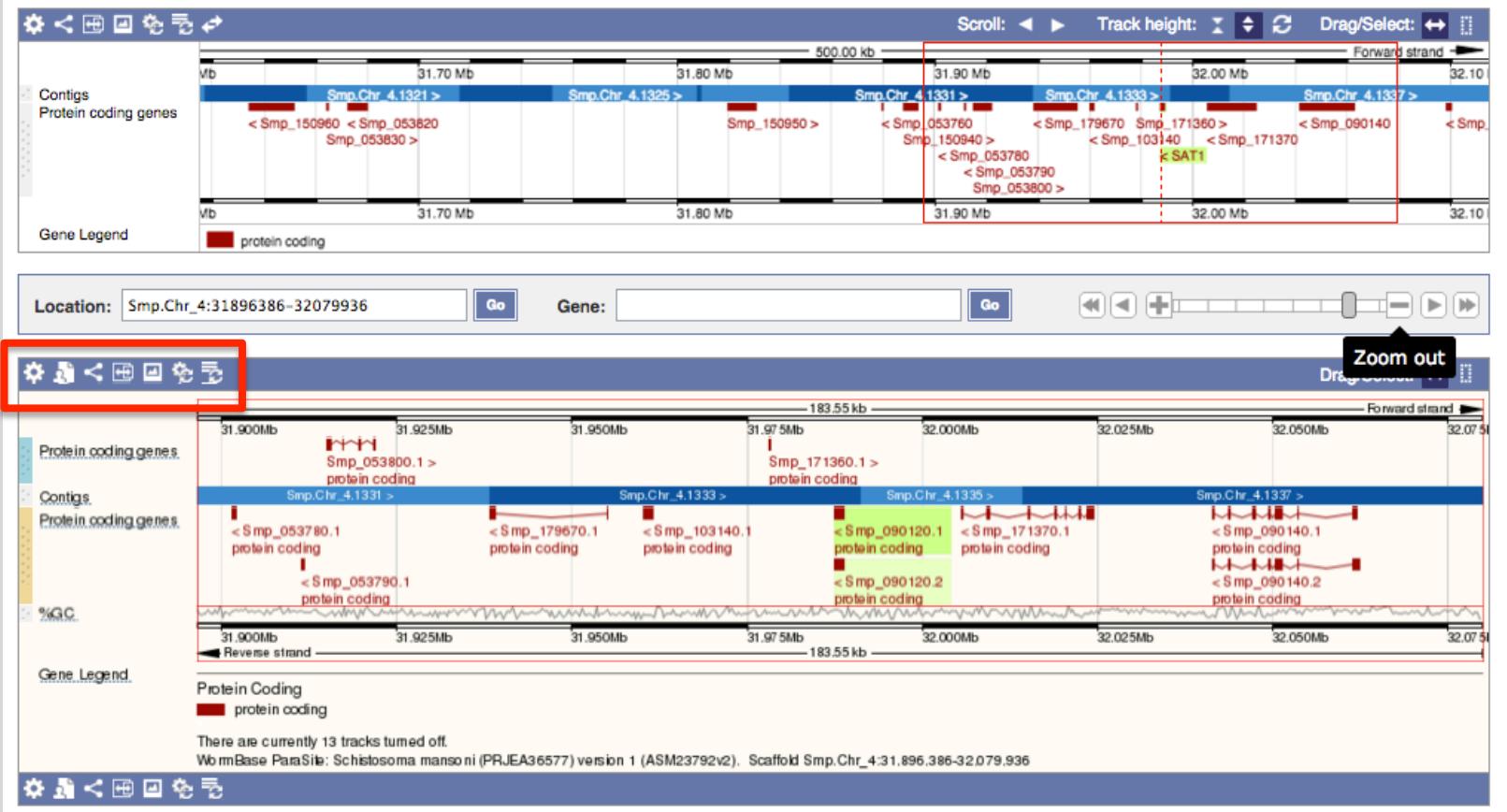
%GC

Gene Legend

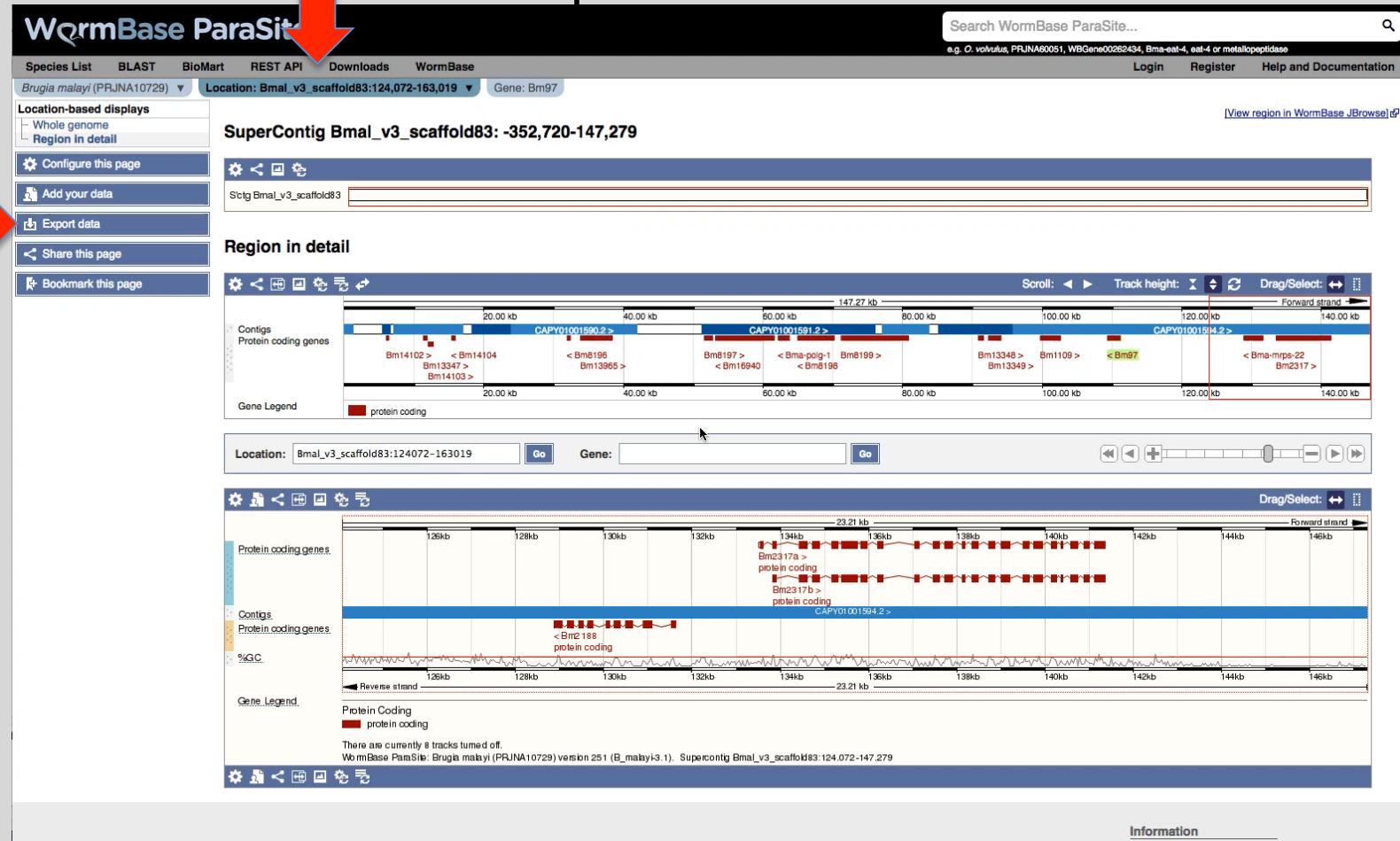

There are currently 15 tracks turned off.  
WormBase ParaSite: Brugia malayi (PRJNA10729) version 251 (B\_malayi-3.1). Supercontig Bmal\_v3\_scaffold83:51,712-147,279

There are currently 15 tracks turned off.  
WormBase ParaSite: Brugia malayi (PRJNA10729) version 251 (B\_malayi-3.1). Supercontig Bmal\_v3\_scaffold83:51,712-147,279




# Jump to a chromosome location

## Region in detail




# Sharing, options for browser

## Region in detail

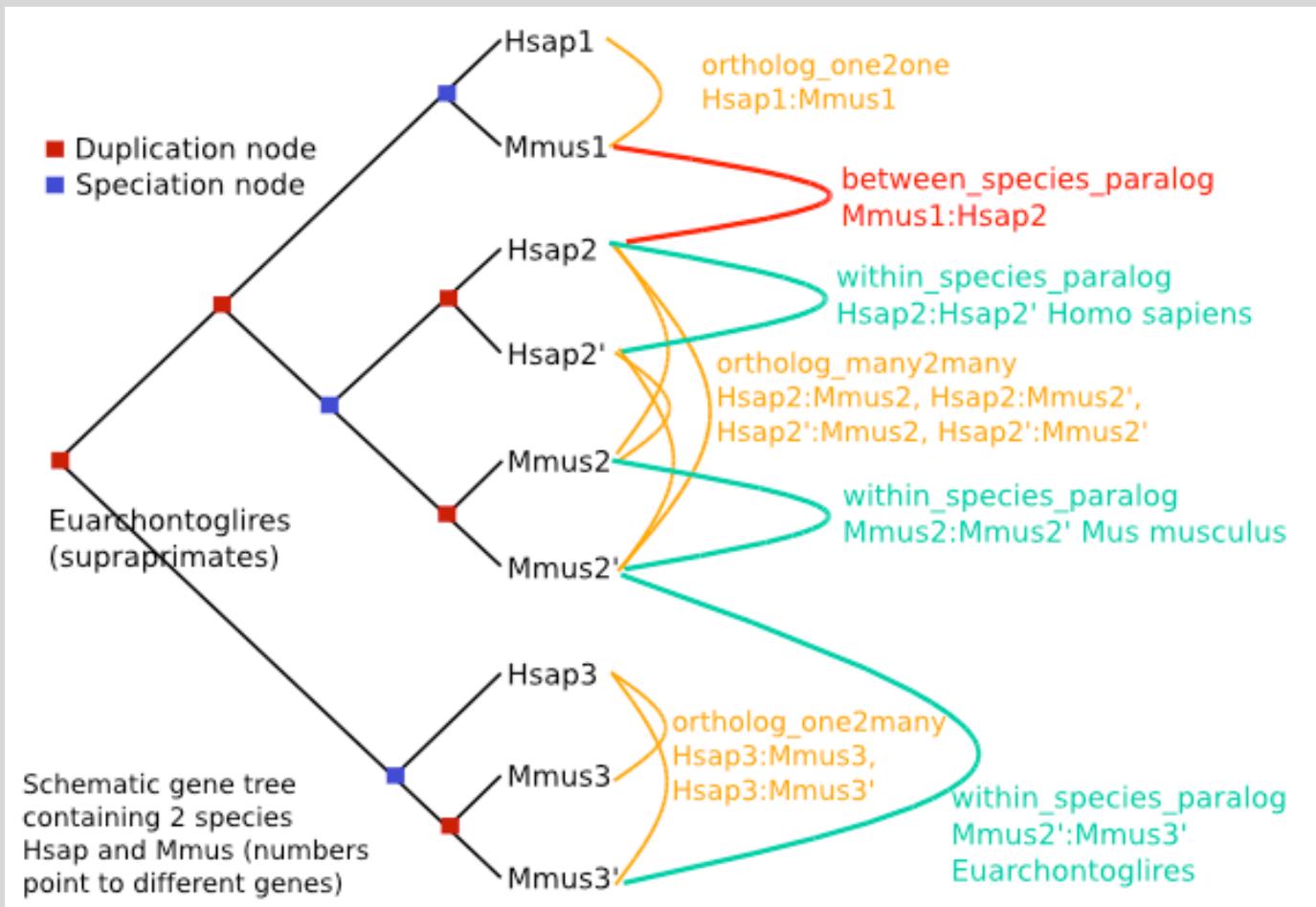


# Export data

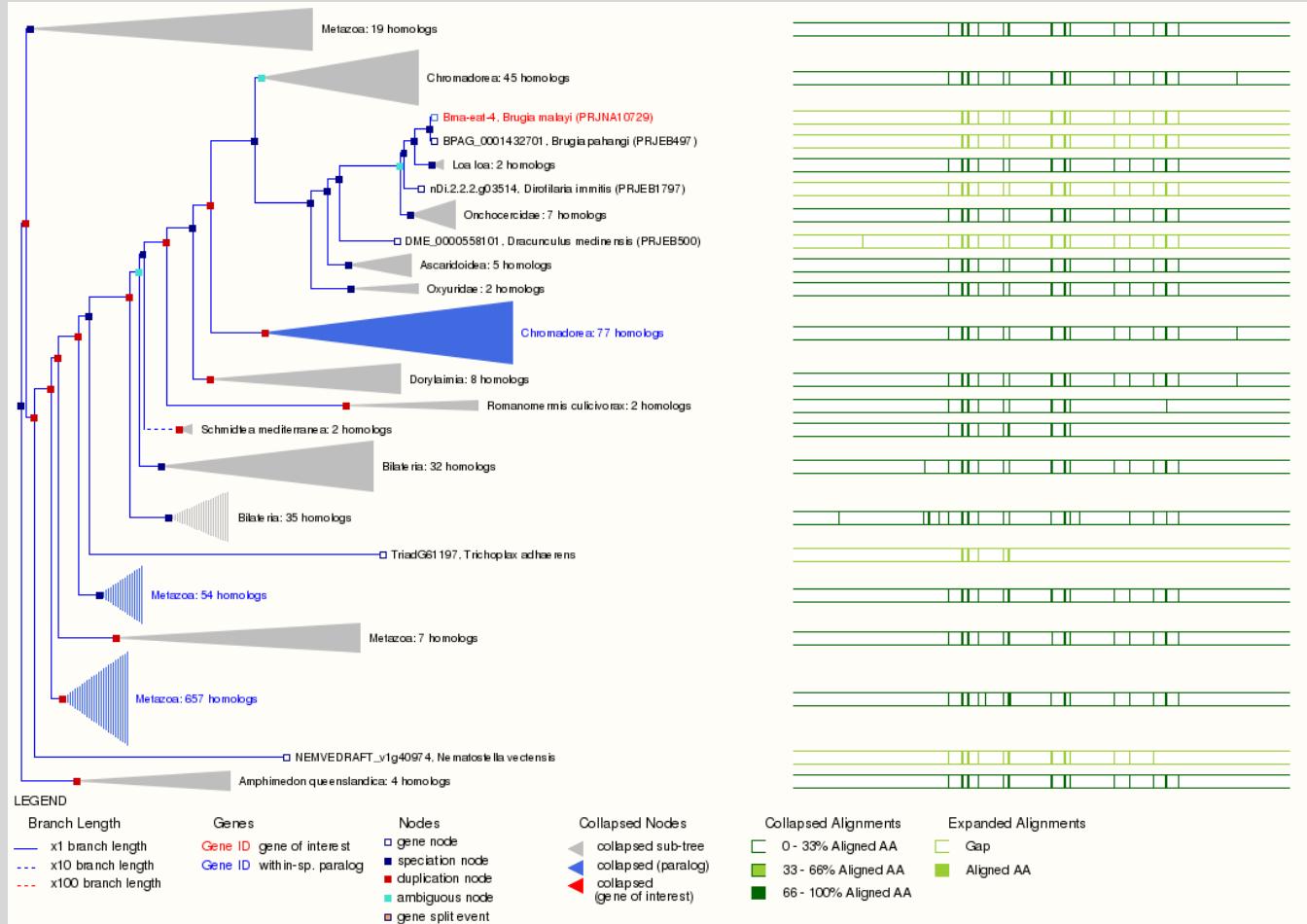


# 4. Comparative Genomics




# Introduction

- During each release, we compute phylogenetic trees with Compara
- Every gene is included from 120 species:
  - 99 helminths
  - 9 free-living nematodes
  - 12 comparator species (e.g. human, mouse, etc)
- Determine orthologues and paralogues


# Homology types

- Orthologues: any gene pairwise relation where the ancestor node is a speciation event
  - 1-to-1 orthologue
  - 1-to-many orthologue
  - Many-to-many orthologue
- Paralogues: any pairwise relation where the ancestor node is a duplication event

# Understanding the gene tree



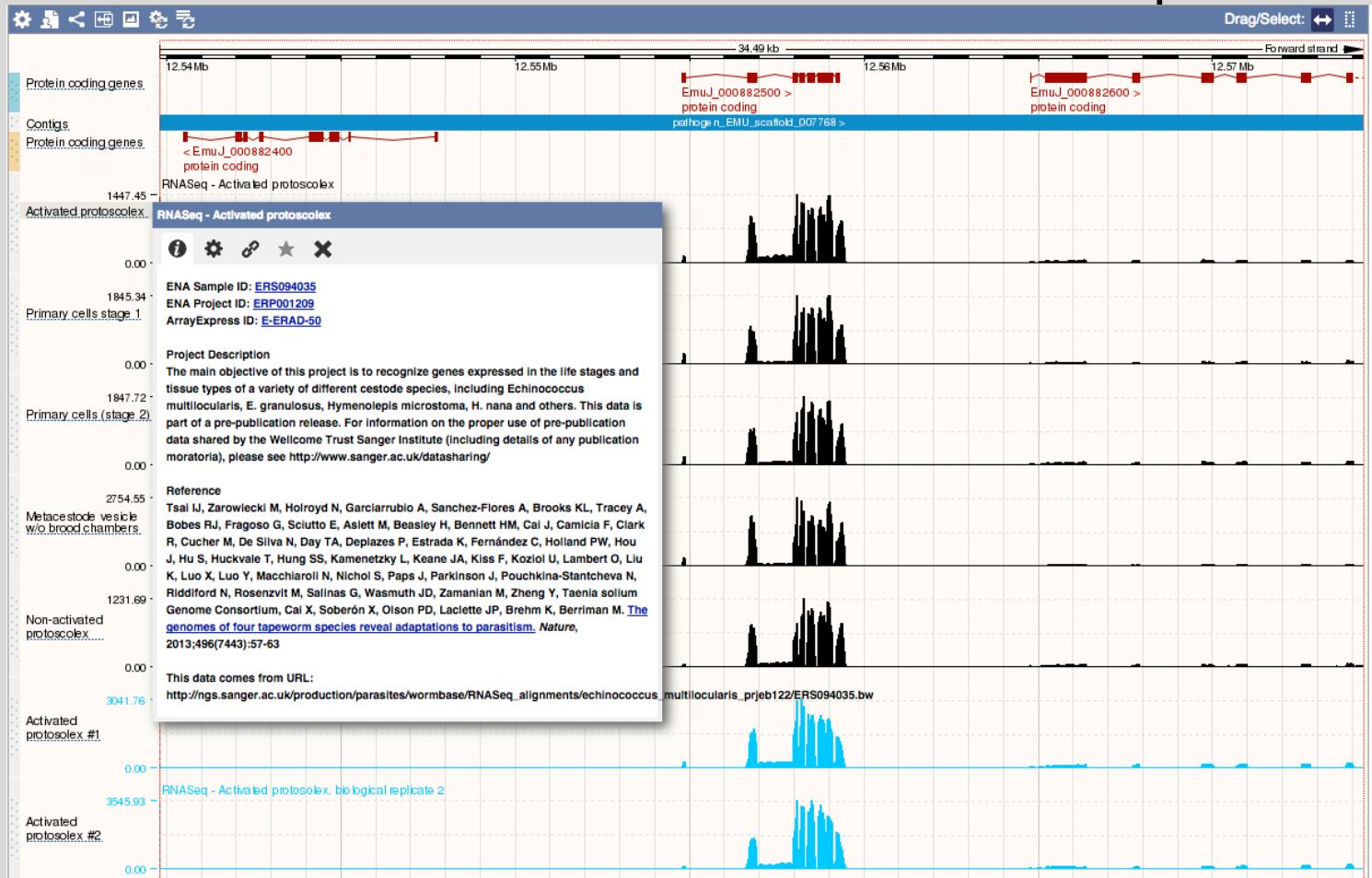
# Visual access to the trees



# Tabular access to tree data

## Selected orthologues

[View protein alignments of all orthologues](#)


| Show All <input type="button" value="entries"/>      |              | Show/hide columns |                                                                                                                                                                                                  |                                                                                                                        | Filter <input style="float: right;" type="button" value="X"/> |            |           |
|------------------------------------------------------|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------|-----------|
| Species                                              | Type         | dN/dS             | Stable ID & gene name                                                                                                                                                                            | Compare                                                                                                                | Location                                                      | Target %id | Query %id |
| <a href="#">Acanthocheilonema viteae (PRJEB4306)</a> | 1-to-1       | n/a               | <a href="#">nAv.1.0.1.g03135</a><br><br>Probable vesicular glutamate transporter eat-4 (inferred by orthology to a <i>C. elegans</i> protein) [Source: UniProtKB; acc: P34644]                   | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">nAv.1.0.scaf00057:63087-67685:1</a>               | 73         | 76        |
| <a href="#">Amphimedon queenslandica</a>             | Many-to-many | n/a               | <a href="#">Aqu1.218710</a><br><br>No description                                                                                                                                                | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">Contig13347:93913-96460:1</a>                     | 27         | 28        |
| <a href="#">Amphimedon queenslandica</a>             | Many-to-many | n/a               | <a href="#">Aqu1.218711</a><br><br>No description                                                                                                                                                | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">Contig13347:96728-99289:-1</a>                    | 26         | 29        |
| <a href="#">Amphimedon queenslandica</a>             | Many-to-many | n/a               | <a href="#">Aqu1.219143</a><br><br>No description                                                                                                                                                | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">Contig13358:105162-108191:1</a>                   | 28         | 23        |
| <a href="#">Amphimedon queenslandica</a>             | Many-to-many | n/a               | <a href="#">Aqu1.219145</a><br><br>No description                                                                                                                                                | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">Contig13358:109023-112077:1</a>                   | 28         | 30        |
| <a href="#">Ancylostoma caninum (PRJNA72585)</a>     | 1-to-1       | n/a               | <a href="#">ANCCAN_09055</a><br><br>Probable vesicular glutamate transporter eat-4 (inferred by orthology to a <i>C. elegans</i> protein) [Source: UniProtKB; acc: P34644]                       | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">ANCCANDFT_Contig116:390303-392960:1</a>           | 68         | 60        |
| <a href="#">Ancylostoma ceylanicum (PRJNA231479)</a> | 1-to-1       | n/a               | <a href="#">Acey_s0107.g3812</a><br><br>Probable vesicular glutamate transporter eat-4 (projected from <i>Caenorhabditis elegans</i> ortholog eat-4) [Source: UniProtKB/Swiss-Prot; acc: P34644] | <ul style="list-style-type: none"><li>Alignment (protein)</li><li>Alignment (cDNA)</li><li>Gene Tree (image)</li></ul> | <a href="#">Acey_s0107_scaf:399963-412768:-1</a>              | 56         | 67        |

# 5. RNASeq tracks



# Data tracks - RNASeq

# Data tracks - RNASeq



## 6. Adding your own data



# Adding your own data

WormBase ParaSite

Species List BLAST BioMart REST API Downloads WormBase

Brugia timori (PRJEB4663) Location: BTMF\_scaffold0000001:2,457-34,400

Search WormBase ParaSite... e.g. *O. volvulus*; PRJNA60051, WBGene00282434, Bm-est-4, est-4 or metallopeptidase

Help and Documentation

Location-based displays

- Whole genome
- Region in detail

Configure this page

**Add your data** (highlighted with a red arrow)

Export data

Share this page

Bookmark this page

Scaffold BTMF\_scaffold0000001: 2,457-34,400

Region in detail

Contigs Protein coding genes

Gene Legend

Location: BTMF\_scaffold0000001:2457-34400 Go Gene: Go

Contigs Protein coding genes

%GC

Gene Legend

Reverse strand

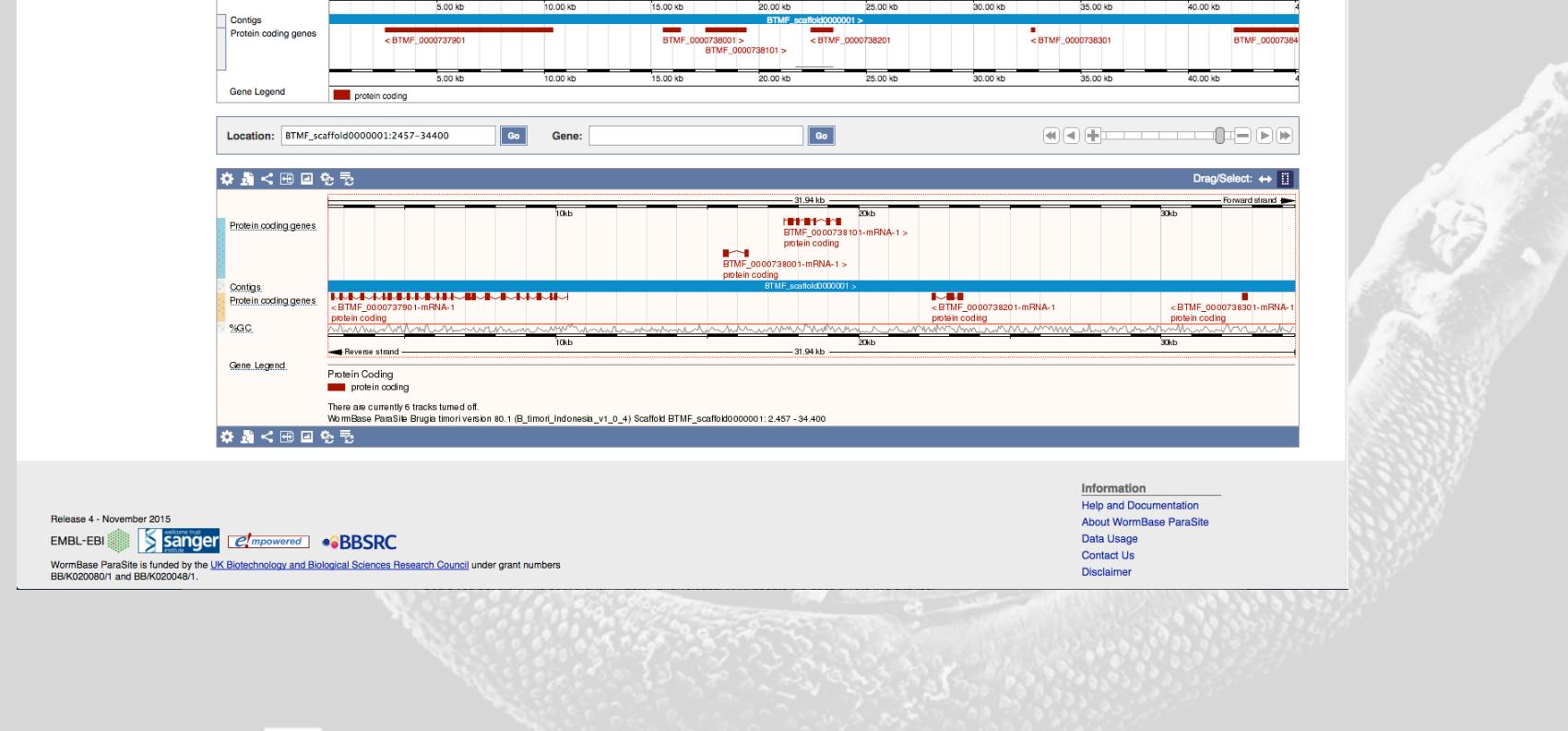
Protein Coding

Information

Help and Documentation

About WormBase ParaSite

Data Usage


Contact Us

Disclaimer

Release 4 - November 2015

EMBL-EBI   BBSRC

WormBase ParaSite is funded by the UK Biotechnology and Biological Sciences Research Council under grant numbers BB/K020080/1 and BB/K020048/1.



# Adding your own data



Account Settings

- Edit Details
- View a group
- Edit a group
- Create new group
- Join existing group
- Invite new members
- Edit bookmark
- Create new bookmark
- Share bookmark

Custom Data

- Add your data**
- Manage Data
- Features on Karyotype

Manage Configurations

- Configurations for this page
- All configurations
- Configuration sets

Logout

**Add a custom track**

Name for this data (optional):

Species:

Assembly:

Data:

Or upload file (max 20MB)  No file chosen

[Help on supported formats, display types, etc](#)

# Adding your own data

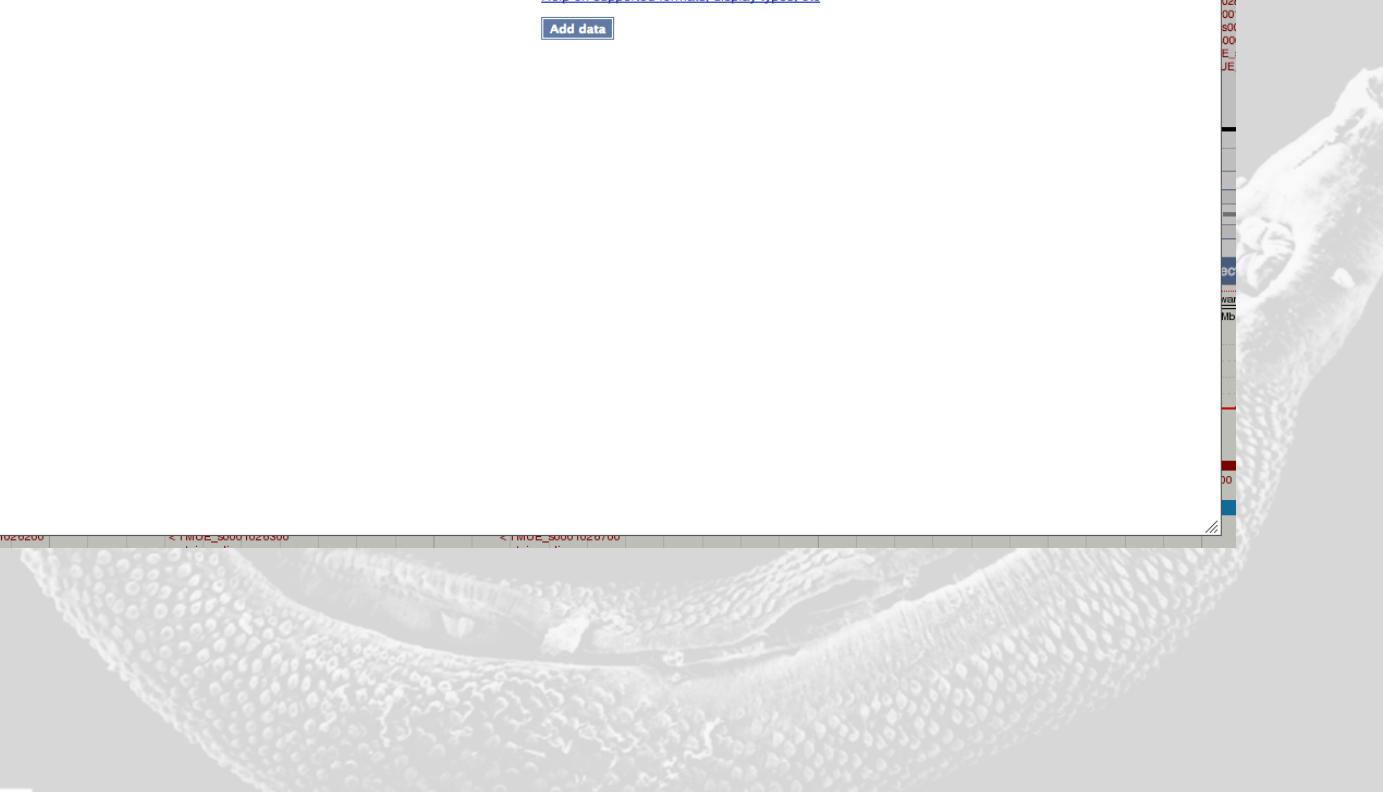
BLAST BioMart REST API Downloads WormBase My Account - ll16@sanger.ac.uk Logout Help and Documentation

Configure Region Image Configure Overview Image Configure Chromosome Image Personal Data

**Add a custom track**

Name for this data (optional):

Species: Trichuris muris (PRJEB126)


Assembly: TMUE2.2

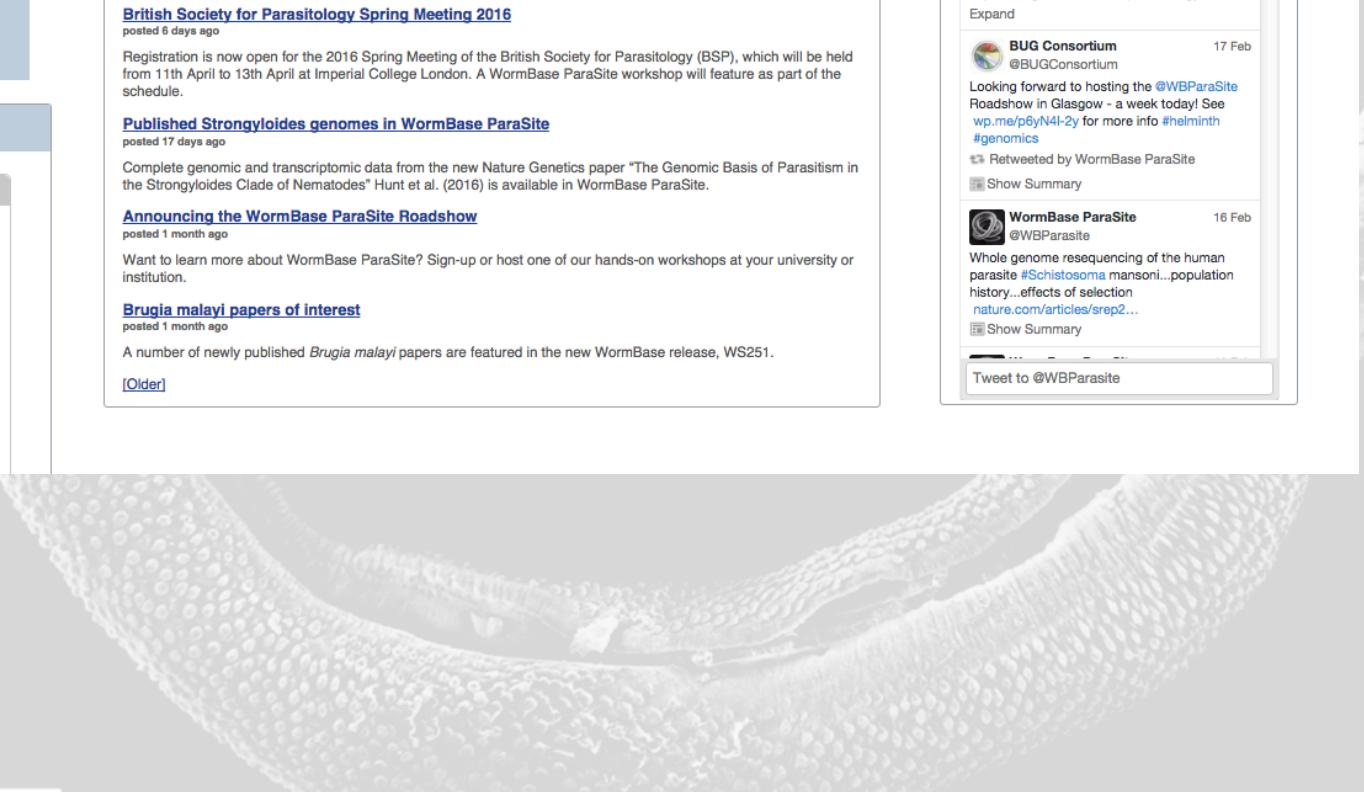
Data: [http://ngs.sanger.ac.uk/production/parasites/wormbase/RNASeq\\_alignments/trichuris\\_muris\\_prjeb126/ERS092077.bw](http://ngs.sanger.ac.uk/production/parasites/wormbase/RNASeq_alignments/trichuris_muris_prjeb126/ERS092077.bw)

Or upload file (max 20MB)  No file chosen

Data format: BigWig

[Help on supported formats, display types, etc](#)




# 7. User Accounts



# User accounts

- Saving and sharing attached data tracks
- Saving configuration settings
- Saving and sharing BLAST results

# User accounts



**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads WormBase

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA60051, WBGene0002434, Bma-eat-4, eat-4 or metal peptidase

[Login](#) [Register](#) [Help and Documentation](#)

**Species** **BLAST** **BioMart**

**API** **Downloads** **WormBase**

**Find a genome**

[\[-\] Nematoda \(Roundworms\)](#)

[\[-\] Clade I](#)

**[Romanomermis culicivorax](#)**  
PRJEB1358

**[Soboliphyme baturini](#)**  
PRJEB516

**[Trichinella nativa](#)**  
PRJNA179527

**[Trichinella spiralis](#)**  
PRJNA26666

**Announcements**

**[Announcing WormBase ParaSite release 5](#)**  
posted 1 month ago

We are pleased to announce the fifth release of WormBase ParaSite.

**Blog**

**[British Society for Parasitology Spring Meeting 2016](#)**  
posted 6 days ago

Registration is now open for the 2016 Spring Meeting of the British Society for Parasitology (BSP), which will be held from 11th April to 13th April at Imperial College London. A WormBase ParaSite workshop will feature as part of the schedule.

**[Published Strongyloides genomes in WormBase ParaSite](#)**  
posted 17 days ago

Complete genomic and transcriptomic data from the new Nature Genetics paper "The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes" Hunt et al. (2016) is available in WormBase ParaSite.

**[Announcing the WormBase ParaSite Roadshow](#)**  
posted 1 month ago

Want to learn more about WormBase ParaSite? Sign-up or host one of our hands-on workshops at your university or institution.

**[Brugia malayi papers of interest](#)**  
posted 1 month ago

A number of newly published *Brugia malayi* papers are featured in the new WormBase release, WS251.

[\[Older\]](#)

**Twitter**

**Tweets** [Follow](#)

**WormBase ParaSite** [@WBparasite](#) 15h  
Sign up for Wormbase ParaSite Workshop at the BSP Spring Meeting in April - [bsp.uk.net/news-and-events...](#) [@parasitogenomes](#) [@BSPparasitology](#)  
[Expand](#)

**BUG Consortium** [@BUGConsortium](#) 17 Feb  
Looking forward to hosting the [@WBParaSite](#) Roadshow in Glasgow - a week today! See [wp.me/p6Y4l-2y](#) for more info [#helminth](#) [#genomics](#)  
[Retweeted by WormBase ParaSite](#)  
[Show Summary](#)

**WormBase ParaSite** [@WBparasite](#) 16 Feb  
Whole genome resequencing of the human parasite [#Schistosoma mansoni](#)...population history...effects of selection [nature.com/articles/srep2...](#)  
[Show Summary](#)

[Tweet to @WBparasite](#)

# User accounts: registering

**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads WormBase

Search WormBase ParaSite...

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bra-eat-4, eat-4 or metallopeptidase

Login Register Help and Documentation

**Strongyloides**

**Register**

**Location-based**

- Whole genome
- Region in

**Configure**

- Manage
- Export data
- Share this
- Bookmarks

**Custom Data**

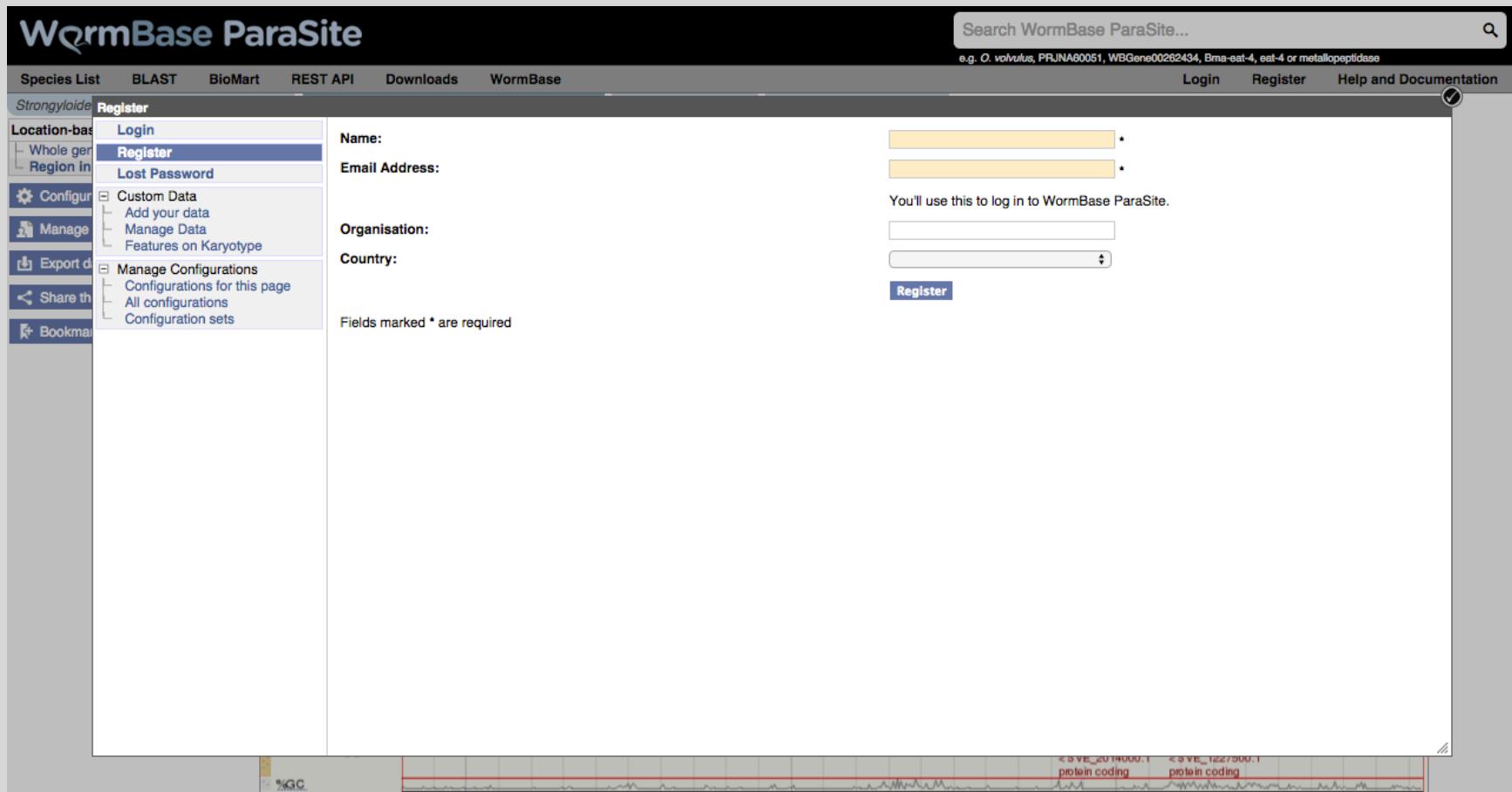
- Add your data
- Manage Data
- Features on Karyotype

**Manage Configurations**

- Configurations for this page
- All configurations
- Configuration sets

Name:

Email Address:


Organisation:

Country:

You'll use this to log in to WormBase ParaSite.

Fields marked \* are required

**Register**



# User accounts

WormBase ParaSite

Species List BLAST BioMart REST API Downloads WormBase

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA60051, WBGene00282434, Brna-eat-4, eat-4 or metallopeptidase

My Account - wormbase.test@gmail.com Logout Help and Documentation

Strongyloides

My Account - wormbase.test@gmail.com

Location-based

- Whole genome
- Region in

Configure

Manage

Export data

Share this

Bookmarks

Account Settings

- Edit Details
- View a group
- Edit a group
- Create new group
- Join existing group
- Invite new members
- Edit bookmark
- Create new bookmark
- Share bookmark

Custom Data

- Add your data
- Manage Data
- Features on Karyotype

Manage Configurations

- Configurations for this page
- All configurations
- Configuration sets

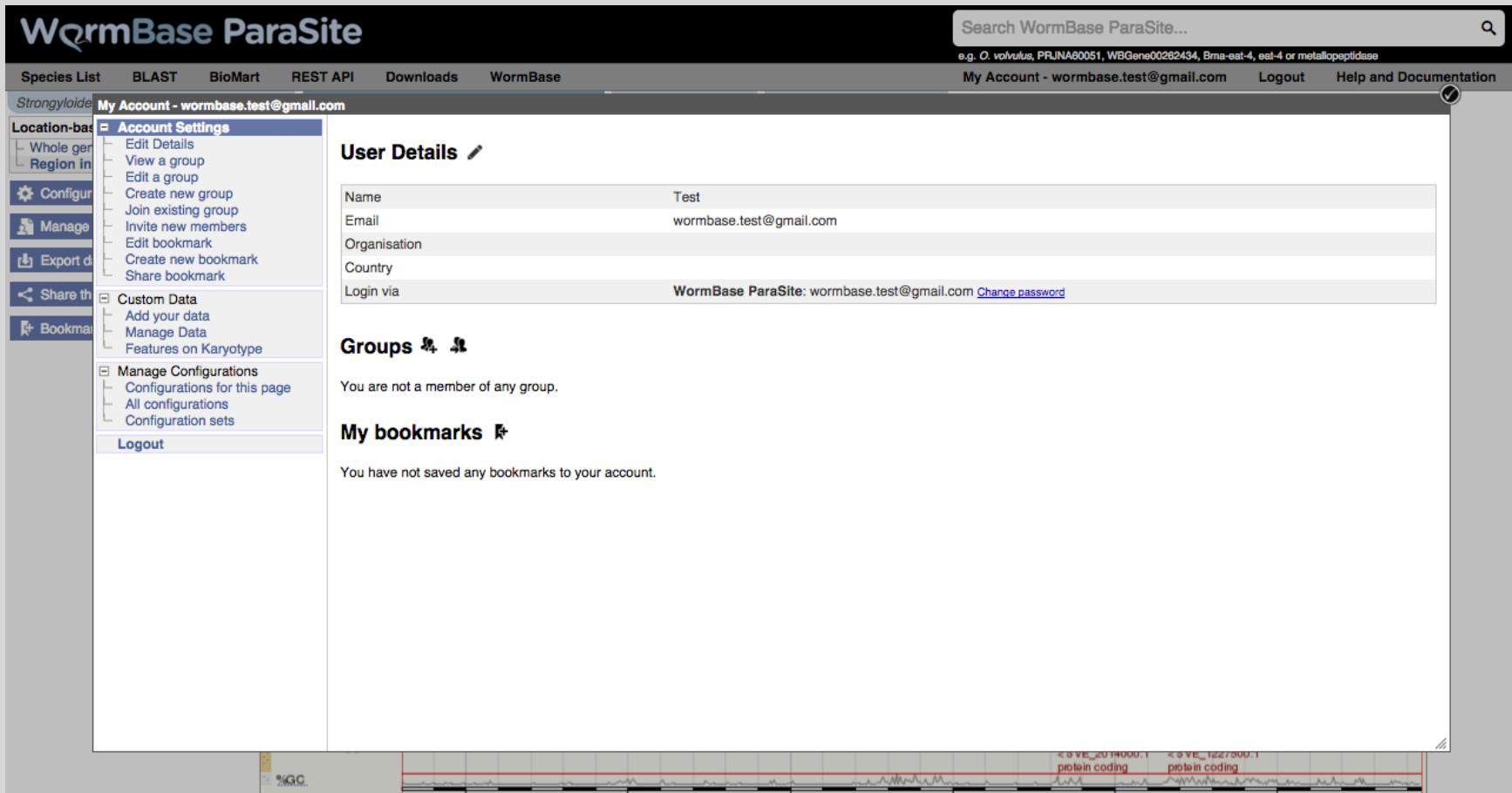
Logout

User Details

Name: Test  
Email: wormbase.test@gmail.com  
Organisation:  
Country:  
Login via: WormBase ParaSite: wormbase.test@gmail.com [Change password](#)

Groups

You are not a member of any group.


My bookmarks

You have not saved any bookmarks to your account.

GC content

protein coding

protein coding



# Exercises



# Answers to exercises

## I. Navigate to the page for *Schistosoma mansoni*

- How many coding genes have been predicted in this genome? **10,831**
- What is the length of the genome? **364,538,298 bp**
- Which institute sequenced this genome? **Sanger**

**WormBase ParaSite** Version: WBPS6 (WS252)

Species List   BLAST   BioMart   REST API   VEP   Downloads   WormBase

Search WormBase ParaSite... 

e.g. *O. volvulus*, PFJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Login   Register   Help and Documentation

 Species

 BLAST

 BioMart

 API

 Downloads

 WormBase

**Announcements**

**Announcing WormBase ParaSite release 6**  
posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  
posted 2 months ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

**Brugia malayi assembly**    
posted 2 months ago

The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop**  
posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[\[Older\]](#)

**Twitter**

Tweets by @WBParasite

 WormBase ParaSite Retweeted

 British Parasitology @BSParasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). [bsp.net/jobs/](#)

 Science @scienmag White blood cells attacking a parasite. [pic.twitter.com/zqAIUZMYDx](#)

[Embed](#) [View on Twitter](#)

Release 6 - April 2016

EMBL-EBI    

WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

**Information**

[Help and Documentation](#) [Citing WormBase ParaSite](#) [About WormBase ParaSite](#) [Data Usage](#) [Contact Us](#) [Disclaimer](#)

# Answers to exercises

2. Navigate to gene OVOC2189 from *Onchocerca volvulus*, then click on the ‘Region in detail’ link to get to the interactive browser page
  - What are the genomic coordinates of OVOC2189?  
**SuperContig OVOC\_OMb: 16,604,931-16,608,759  
(reverse strand)**
  - Create a ‘share link’ for this display
  - Zoom out in the lower browser so that you can see more than one gene
  - Export the sequence of the region you are viewing in FASTA format (Hint: look for the ‘Export data’ button in the sidebar)

**WormBase ParaSite** Version: WBPS6 (WS252)

Species List BLAST BioMart REST API VEP Downloads WormBase

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA600051, WBGene00262434, Bma-est-4, est-4 or metallopeptidase

Login Register Help and Documentation

**Species**

**BLAST**

**BioMart**

**API**

**Downloads**

**WormBase**

**Announcements**

Announcing WormBase ParaSite release 6  
posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness  
posted 2 months ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saeed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

Brugia malayi assembly update  
posted 2 months ago

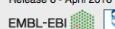
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

Register for a WormBase ParaSite workshop  
posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[\[Older\]](#)

**Twitter**


Tweets by @WBParasite

WormBase ParaSite Retweeted British Parasitology @BSPparasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). bsp.uk.net/jobs/ 15 Jun

WormBase ParaSite Retweeted Science @scienmag White blood cells attacking a parasite. pic.twitter.com/zqAIUZMYDx

Embed View on Twitter

Release 6 - April 2016



WormBase ParaSite is funded by the [UK Biotechnology and Biological Sciences Research Council](#) under grant numbers BB/K020080/1 and BB/K020048/1.

#### Information

- [Help and Documentation](#)
- [Citing WormBase ParaSite](#)
- [About WormBase ParaSite](#)
- [Data Usage](#)
- [Contact Us](#)
- [Disclaimer](#)

# Answers to exercises

3. Scroll down the page you are on to see the RNASeq tracks aligned to this sequence

- How many studies are being displayed for this species? (Hint: studies are shown in different colours) - 2
- Identify the study ID and follow the link to see the ENA project page.
- Locate the configuration for this page and turn OFF visualization of study ERP001350 (Hint: look for the ‘Configure this page’ option in the sidebar).
- Identify the publication for study SRP056861 and navigate to the full text.

QuickTime Player File Edit View Window Help

Schisto × Smp\_0 × 10 Google × www.e × WormB × WBPS × (32) Tw × https:// × http:// × wormb × School × CrossC × Jane ×

parasite.wormbase.org/Onchocerca.volvulus.prjeb513/Location/View?db=core;g=WBGene00238998;r=OVOC\_OM1b:16604931-16608759;... ☆ K B

Apps Calendar QuickGO W Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

Onchocerca volvulus (PRJEB513) Location: OVOC\_OM1b:16,604,931-16,608,759 Gene: OVOC2189 Transcript: OVOC2189 [View region in WormBase JBrowse]

**Location-based displays**  
 Whole genome  
 Region in detail

**Configure this page**

**Add your data**

**Export data**

**Share this page**

**Bookmark this page**

## SuperContig OVOC\_OM1b: 16,604,931-16,608,759

Contigs Non-coding RNA genes Protein coding genes

16.40 Mb 16.50 Mb 16.60 Mb 16.70 Mb 16.80 Mb

CBVM010000072.1 > CBVM010000072.1 >

OVOC2146 > OVOC2150 > < OVOC2157 < OVOC2165 < OVOC2174 OVOC2182 > < OVOC2147 < OVOC2152 < OVOC2151 < OVOC2168 < Ovo-hpo-21 OVOC2184 > OVOC2148 > < OVOC2153 OVOC2162 > Ovo-irr-1 > OVOC2178 > OVOC2185 > Ovo-apy-1 > Ovo-rpac-19 > OVOC2164 > OVOC2173 > < Ovo-isy-2 OVOC2186 > < Ovo-ips-41 Ovo-usp-14 > < OVOC2166 < Ovo-taf-6.2 OVOC2183 > < Ovo-dhs-29 Ovo-zhl-1 > < OVOC2169 Ovo-tbg-1 > OVOC2159 > < OVOC2167 OVOC2171 > < Ovo-tag-275 > OVOC2193 > OVOC2194 > OVOC2197 > Ovo-lcn-1 > OVOC2210 > OVOC13436 > Ovo-moma-1 > OVOC2198 > OVOC2204 > OVOC2211 > < Ovo-bal-1 < OVO2191 < Ovo-flu-2 OVOC2192 > < OVOC2196 OVOC2207 > OVOC2214 > < Ovo-dpy-7 > Ovo-gpx-6 > < Ovo-psmd-9 < OVOC2201 Ovo-gut-2 > OVOC2217 > Ovo-pqn-37 > OVOC2205 > OVOC2206 > OVOC2213 > OVOC2218 > < Ovo-osm-1

500.00 kb

Forward strand

16.40 Mb 16.50 Mb 16.60 Mb 16.70 Mb 16.80 Mb

Gene Legend protein coding RNA gene

Location: OVOC\_OM1b:16604931-16608759 Go  
 Gene: Go

# Answers to exercises

4. Navigate to the *Trichuris muris* genome page, and click on the 'Example region' link in the Genome assembly information box:
  - Open up the 'Add your Data' window by clicking the link in the sidebar
  - Attach one of the BigWig files located at:  
**<http://www.ebi.ac.uk/~jane/testdata/>**  
by pasting the URL in to the Data box (Hint: to copy the URL, right-click file name and 'Copy link address')
  - Navigate to gene TMUE\_s0016004100 and have a look at the RNASeq track. How would you judge the existing gene model? (Hint: go to the 'Region in Detail' view to see the tracks and zoom in) **(no evidence for first two exons, no evidence for intron 4)**

QuickTime Player File Edit View Window Help

WormBase ParaSite Index of /~jane WBPS Workshop Smp\_034420.1 Google Calendar www.ebi.ac.uk An Integrated M Twitter Jane

parasite.wormbase.org

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

**Species** **BLAST** **BioMart**

**API** **Downloads** **WormBase**

**Announcements**

**Announcing WormBase ParaSite release 6** posted 2 months ago We are pleased to announce the sixth release of WormBase ParaSite.

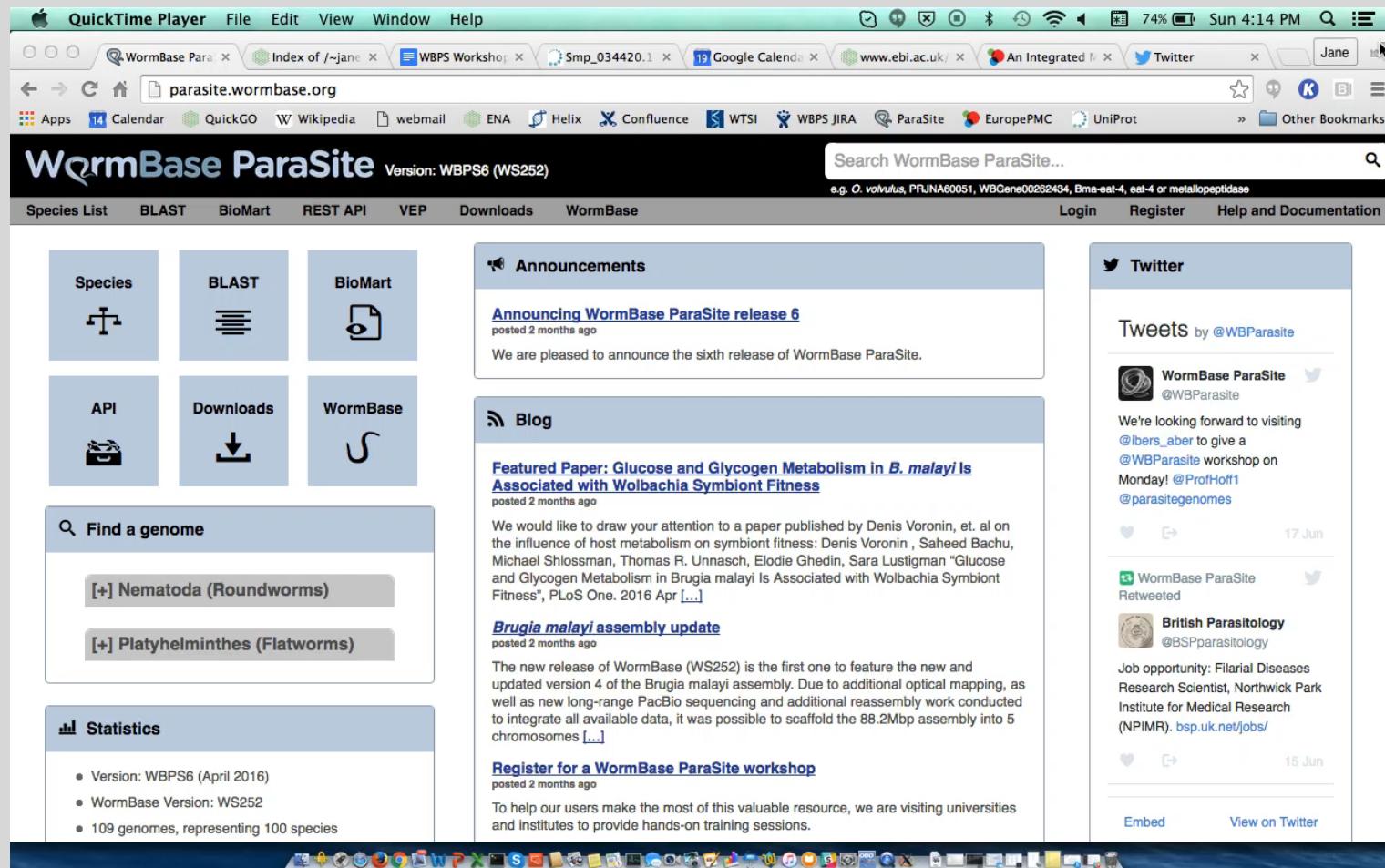
**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness** posted 2 months ago We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

**Brugia malayi assembly update** posted 2 months ago The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the Brugia malayi assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop** posted 2 months ago To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

**Twitter**


Tweets by @WBParasite

**WormBase ParaSite** @WBParasite We're looking forward to visiting @ibers\_aber to give a @WBParasite workshop on Monday! @ProfHoff1 @parasitegenomes 17 Jun

**WormBase ParaSite** Retweeted

**British Parasitology** @BSPparasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). bsp.uk.net/jobs/ 15 Jun

Embed View on Twitter



# Answers to exercises

## 5. Locate the gene SVE\_I227300

- In which species is this gene found? *Strongyloides venezuelensis*
- What is the length of the protein product of this gene? 562aa
- How many Gene Ontology (GO) terms are assigned to this gene? 9 (3 CC, 6 BP)

QuickTime Player File Edit View Window Help

WormBase ParaSite Index of ~/jane WBPS Workshop Smp\_034420.1 Google Calendar www.ebi.ac.uk An Integrated M (4) Twitter Jane

parasite.wormbase.org/?r=scaffold16:255610-270154;g=TMUE\_s0016004100;db=core

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

**Species** **BLAST** **BioMart**

**API** **Downloads** **WormBase**

**Announcements**

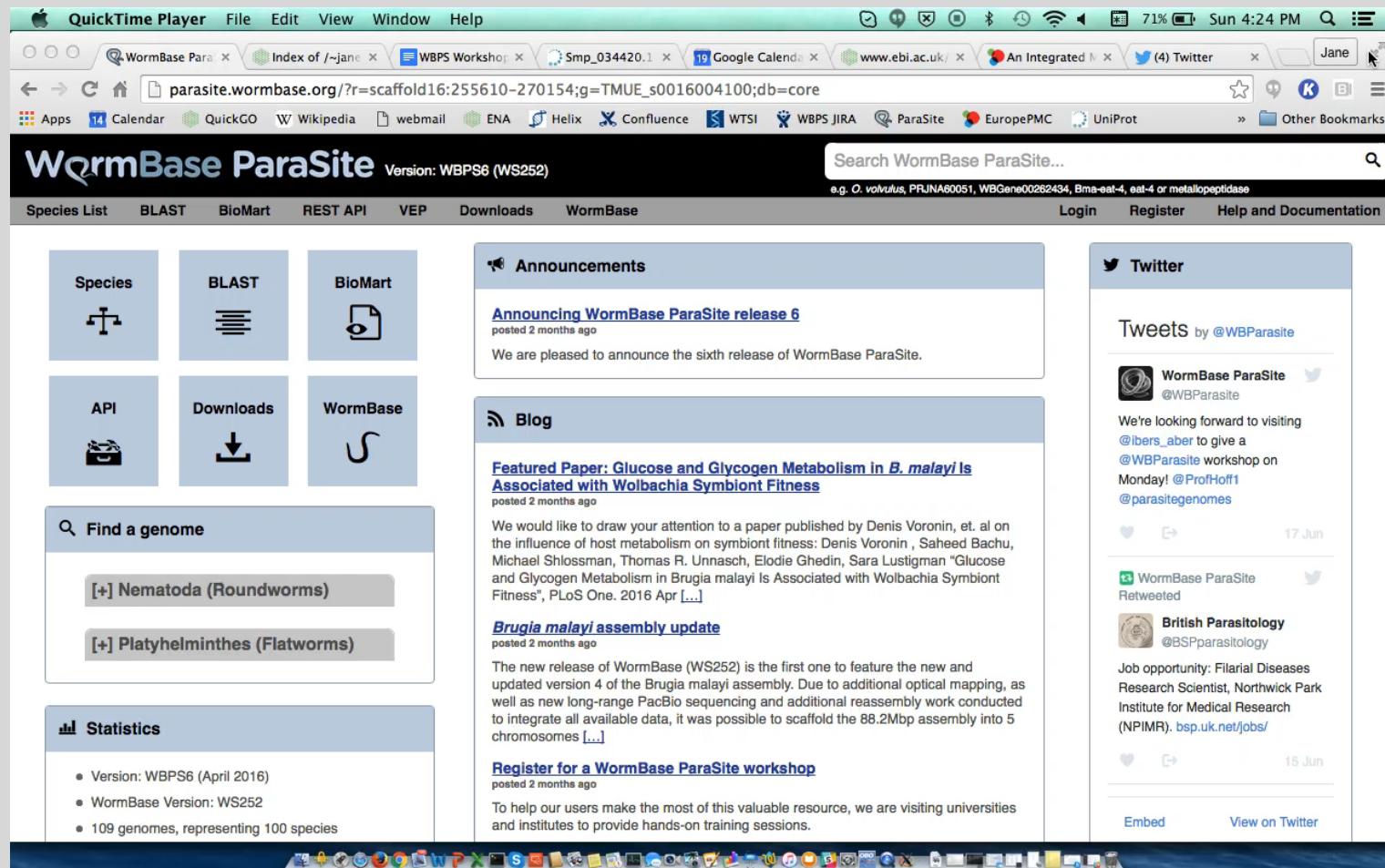
**Announcing WormBase ParaSite release 6** posted 2 months ago We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness** posted 2 months ago We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

***Brugia malayi* assembly update** posted 2 months ago The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop** posted 2 months ago To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.


**Twitter**

**Tweets** by @WBParasite

**WormBase ParaSite** @WBParasite We're looking forward to visiting @ibers\_aber to give a @WBParasite workshop on Monday! @ProfHoff1 @parasitegenomes 17 Jun

**WormBase ParaSite** Retweeted **British Parasitology** @BSPparasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). bsp.uk.net/jobs/ 15 Jun

Embed View on Twitter



# Answers to exercises

6. Move onto the 'transcript' tab for SVE\_I227300
  - How many exons does the single transcript of this gene have? 6
  - Which Pfam domain has been assigned to the protein product of this gene? Innexin (PF00876)

QuickTime Player File Edit View Window Help

WormBase ParaSite Index of ~/jane WBPS Workshop Smp\_034420.1 Google Calendar An Integrated M Jane

parasite.wormbase.org/Strongyloides\_venezuelensis\_prjeb530/Gene/Summary?db=core;g=SVE\_1227300;r=SVE\_contig0000018:37733-396...

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

Strongyloides venezuelensis (PRJEB530) Location: SVE\_contig0000018:37,733-39,694 Gene: SVE\_1227300 Transcript: SVE\_1227300.1

**Gene-based displays**

- Summary
- Splice variants
- Sequence
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Literature
- Comparative Genomics
  - Gene tree
  - Orthologues
  - Paralogues

**Gene: SVE\_1227300**

**Description** Innixin unc-7 (projected from *Caenorhabditis elegans* ortholog unc-7) [Source:UniProtKB/Swiss-Prot;Acc:Q03412]

**Location** Scaffold SVE\_contig0000018: 37,733-39,694 forward strand.

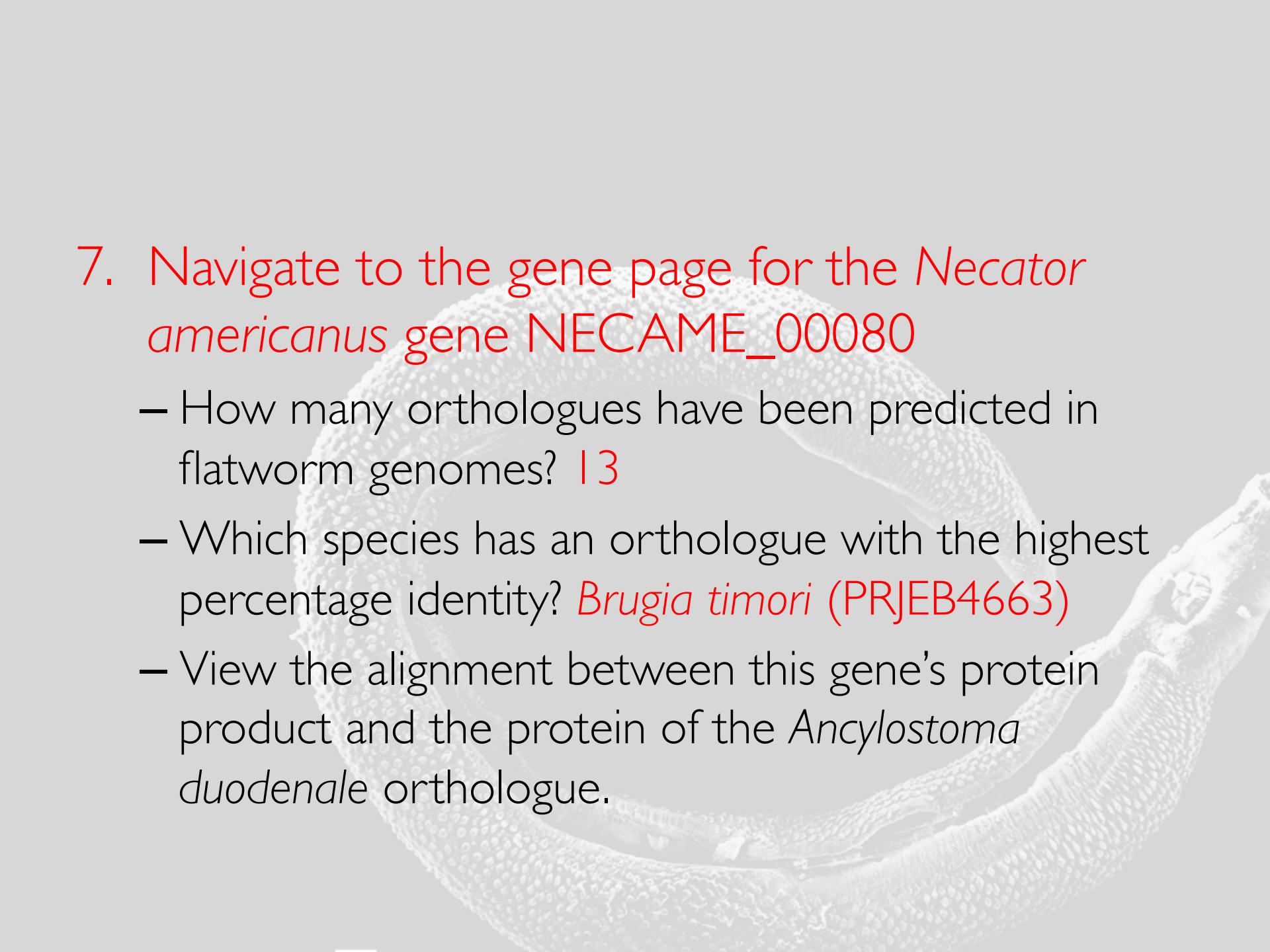
**About this gene** This gene has 1 transcript (splice variant), 89 orthologues and 16 paralogues.

**Gene type** Protein coding

**Annotation Method** Gene models from the Strongyloididae Nematode Genomes Project (unpublished) from the Parasite Genomics Group at the Wellcome Trust Sanger Institute

**Transcripts** Hide transcript table

Show/hide columns (2 hidden) Filter


| Name  | Transcript ID | bp   | Protein | Biotype        |
|-------|---------------|------|---------|----------------|
| Novel | SVE_1227300.1 | 1689 | 562aa   | Protein coding |

**Summary** Go to Region in Detail for more tracks and navigation options (e.g. zooming)

30,000 32,500 35,000 37,500 40,000 42,500 45,000 47,500

21.96 kb Forward strand

Protein coding genes. SVE\_1227200.1 > SVE\_1227300.1 > SVE\_1227400.1 >



## 7. Navigate to the gene page for the *Necator americanus* gene NECAME\_00080

- How many orthologues have been predicted in flatworm genomes? 13
- Which species has an orthologue with the highest percentage identity? *Brugia timori* (PRJEB4663)
- View the alignment between this gene's protein product and the protein of the *Ancylostoma duodenale* orthologue.

QuickTime Player File Edit View Window Help

37% Sun 10:42 PM

parasite.wormbase.org

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

**Species** **BLAST** **BioMart**

**API** **Downloads** **WormBase**

**Announcements**

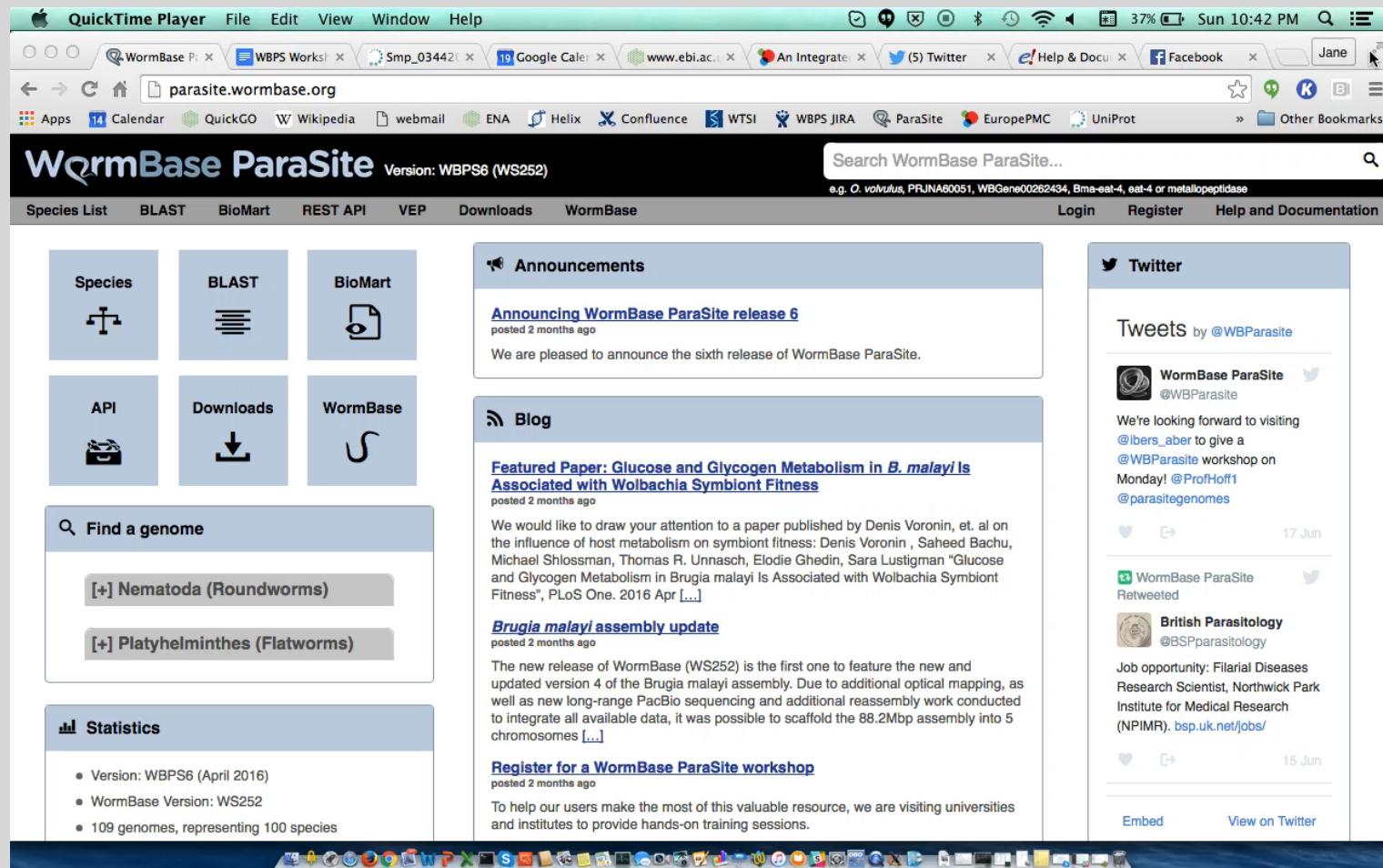
**Announcing WormBase ParaSite release 6**  
posted 2 months ago  
We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  
posted 2 months ago  
We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

***Brugia malayi* assembly update**  
posted 2 months ago  
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop**  
posted 2 months ago  
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.


**Twitter**

**Tweets** by @WBParasite

**WormBase ParaSite** @WBParasite We're looking forward to visiting @ibers\_aber to give a @WBParasite workshop on Monday! @ProfHoff1 @parasitegenomes 17 Jun

**WormBase ParaSite** Retweeted @BSPparasitology British Parasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). [bsp.uk.net/jobs/](http://bsp.uk.net/jobs/) 15 Jun

Embed View on Twitter



8. Paralogues are also predicted. These are caused by duplication events.

- How many paralogues are predicted for the *Necator americanus* gene NECAME\_00080?
- Look at the percent identity for this alignment - would you call this as a parologue?

QuickTime Player File Edit View Window Help

WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

Necator americanus (PRJNA72135) Location: KI657455:914,690-916,914 Gene: NECAME\_00080 Transcript: NECAME\_00080

**Gene-based displays**

- Summary
- Splice variants
- Sequence
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Literature
- Comparative Genomics
  - Gene tree
  - **Orthologues**
  - Paralogues

**Gene: NECAME\_00080**

**Description** HMG box [Source:UniProtKB/TrEMBL;Acc:[W2U1H1](#)]

**Location** Scaffold KI657455: 914,690-916,914 reverse strand.

**About this gene** This gene has 1 transcript ([splice variant](#)), [85 orthologues](#) and [1 parologue](#).

**Gene type** Protein coding

**Annotation Method** Get models produced by the [Mitreva laboratory at the Genome Institute of Washington University](#), as described in [Tang et al \(2014\)](#)

**Transcripts** [Hide transcript table](#)

| Name  | Transcript ID | bp  | Protein | Biotype        | UniProt                |
|-------|---------------|-----|---------|----------------|------------------------|
| Novel | NECAM_00080   | 498 | 166aa   | Protein coding | <a href="#">W2U1H1</a> |

**Orthologues** [?](#)

[Download orthologues](#)

**Summary of orthologues of this gene**  
Click on 'Show' to display the orthologues for one or more groups, or click on 'Configure this page' to choose a custom list of species

| Species set       | Show details             | 1-to-1 | 1-to-many | many-to-many |
|-------------------|--------------------------|--------|-----------|--------------|
| Human             | <input type="checkbox"/> | 0      | 1         | 0            |
| <i>C. elegans</i> | <input type="checkbox"/> | 1      | 0         | 0            |

9. Locate the *Fasciola hepatica* (PRJNA179522) orthologue of the human gene BRCA2. Using the gene trees:

- How close in evolutionary history is this gene located to its orthologue?
- Are there any duplication events in the evolution of this gene and its homologues? Yes, 2

QuickTime Player File Edit View Window Help

WormBase ParaSite Version: WBPS6 (WS252)

Search WormBase ParaSite... e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

Species BLAST BioMart

API Downloads WormBase

Find a genome

[+] Nematoda (Roundworms)

[+] Platyhelminthes (Flatworms)

Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species

Announcements

**Announcing WormBase ParaSite release 6**  
posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

Blog

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  
posted 2 months ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

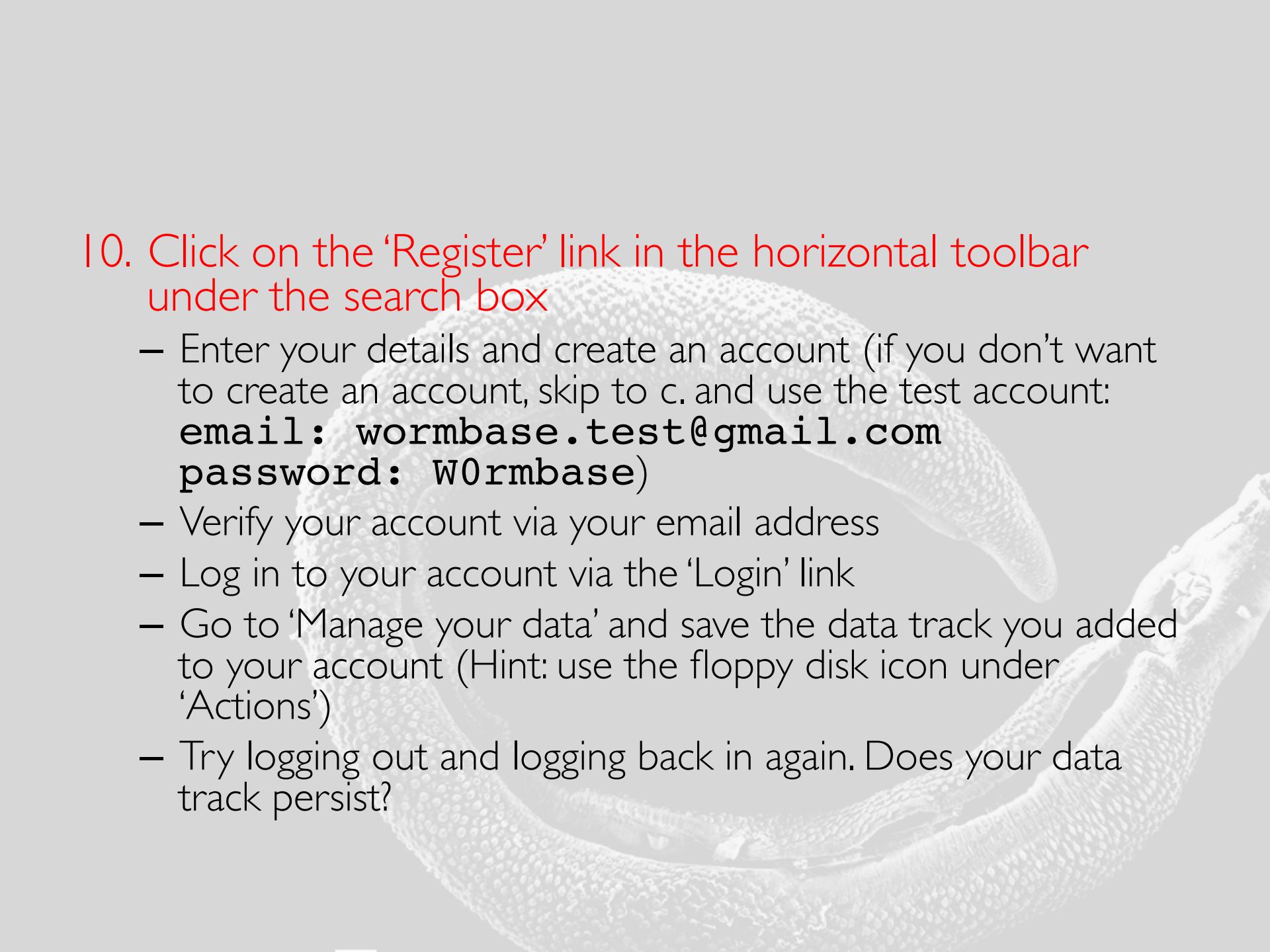
***Brugia malayi* assembly update**  
posted 2 months ago

The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop**  
posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

Twitter


Tweets by @WBParasite

**WormBase ParaSite** @WBParasite We're looking forward to visiting @ibers\_aber to give a @WBParasite workshop on Monday! @ProfHoff1 @parasitegenomes

**WormBase ParaSite** Retweeted

**British Parasitology** @BSPparasitology Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). [bsp.uk.net/jobs/](http://bsp.uk.net/jobs/)

Embed View on Twitter



## 10. Click on the 'Register' link in the horizontal toolbar under the search box

- Enter your details and create an account (if you don't want to create an account, skip to c. and use the test account:  
**email: wormbase.test@gmail.com**  
**password: W0rmbase**)
- Verify your account via your email address
- Log in to your account via the 'Login' link
- Go to 'Manage your data' and save the data track you added to your account (Hint: use the floppy disk icon under 'Actions')
- Try logging out and logging back in again. Does your data track persist?

# BioMart part II answers

- I. Using BioMart and your gene list, generate a table that contains: i. WormBase ParaSite gene ID (stable ID), ii. gene name and iii. RefSeq Protein ID.



## Find a genome

[+] Nematoda (Roundworms)

[+] Platyhelminthes (Flatworms)

## Statistics

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

## Announcements

### Announcing WormBase ParaSite release 6

posted 2 months ago

We are pleased to announce the sixth release of WormBase ParaSite.

## Blog

### Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness

posted 2 months ago

We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

### *Brugia malayi* assembly update

posted 2 months ago

The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

### Register for a WormBase ParaSite workshop

posted 2 months ago

To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[Older]

## Twitter

### Tweets by @WBParasite

 @WBParasite

We're looking forward to visiting @ibers\_aber to give a @WBParasite workshop on Monday! @ProfHoff1 @parasitegenomes

  17 Jun

 WormBase ParaSite Retweeted

 @BSPparasitology

Job opportunity: Filarial Diseases Research Scientist, Northwick Park Institute for Medical Research (NPIMR). [bsp.uk.net/jobs/](http://bsp.uk.net/jobs/)

  15 Jun

[Embed](#) [View on Twitter](#)

## Information

[Help and Documentation](#)

[Citing WormBase ParaSite](#)

[About WormBase ParaSite](#)

# BioMart part II answers

2. Using BioMart, generate a table showing i. the WormBase ParaSite gene ID (stable ID), ii. *O. volvulus* gene name, iii. *C. elegans* orthologue gene stable ID and iv. human orthologue gene stable ID.
  - How many of these genes have an orthologue defined in both *C. elegans* and human? 4

QuickTime Player File Edit View Window Help

BioMart - M... WBPS Works! www.ebi.ac... Smp\_03442... Google Calen... www.ebi.ac... An Integrate... (6) Twitter... Boden UK | Jane

parasite.wormbase.org/biomart/martview/d7eb8597e14d4d384c03180ec40db83e

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite

WormBase Home | ParaSite Home

Search WormBase ParaSite...

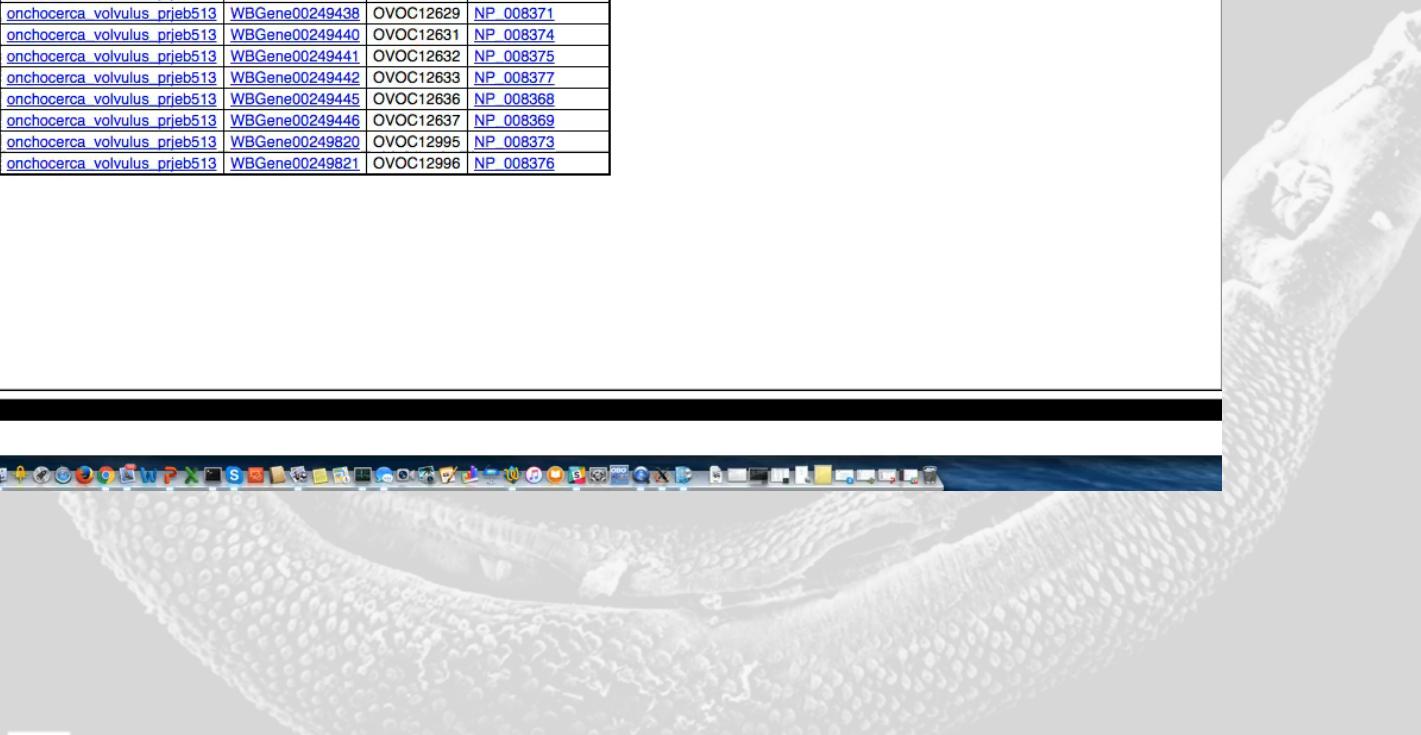
BLAST | BioMart | Downloads

New Count Results

Export all results to File TSV  Unique results only  Go

Email notification to

View 10 rows as HTML  Unique results only


| Genome project               | Gene stable ID | Gene name | RefSeq protein ID |
|------------------------------|----------------|-----------|-------------------|
| onchocerca.volvulus.prieb513 | WBGene00249437 | OVOC12628 | NP_008370         |
| onchocerca.volvulus.prieb513 | WBGene00249438 | OVOC12629 | NP_008371         |
| onchocerca.volvulus.prieb513 | WBGene00249440 | OVOC12631 | NP_008374         |
| onchocerca.volvulus.prieb513 | WBGene00249441 | OVOC12632 | NP_008375         |
| onchocerca.volvulus.prieb513 | WBGene00249442 | OVOC12633 | NP_008377         |
| onchocerca.volvulus.prieb513 | WBGene00249445 | OVOC12636 | NP_008368         |
| onchocerca.volvulus.prieb513 | WBGene00249446 | OVOC12637 | NP_008369         |
| onchocerca.volvulus.prieb513 | WBGene00249820 | OVOC12995 | NP_008373         |
| onchocerca.volvulus.prieb513 | WBGene00249821 | OVOC12996 | NP_008376         |

1. Select your 'Query Filters' (these are search parameters that define your results)  
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)  
3. Hit the 'Results' button at the top of this page

**1. Query Filters**  
Gene stable ID(s): [ID-list specified]

**2. Output Attributes**  
Genome project  
Gene stable ID  
Gene name  
RefSeq protein ID

WormBase ParaSite © EBI & WTSI



# BioMart part II answers

3. Using BioMart, get the sequence for the region 500bp upstream of each gene in your list. Export this as a FASTA file.

QuickTime Player File Edit View Window Help

BioMart - M... WBPS Works! www.ebi.ac... Smp\_03442... Google Calen... www.ebi.ac... An Integrate... (6) Twitter... Boden UK | Jane

parasite.wormbase.org/biomart/martview/109f0407fffb4ffb112d35a294f2f352

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite

WormBase Home | ParaSite Home

New Count Results

Search WormBase ParaSite...

BLAST | BioMart | Downloads

URL XML Perl Help

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

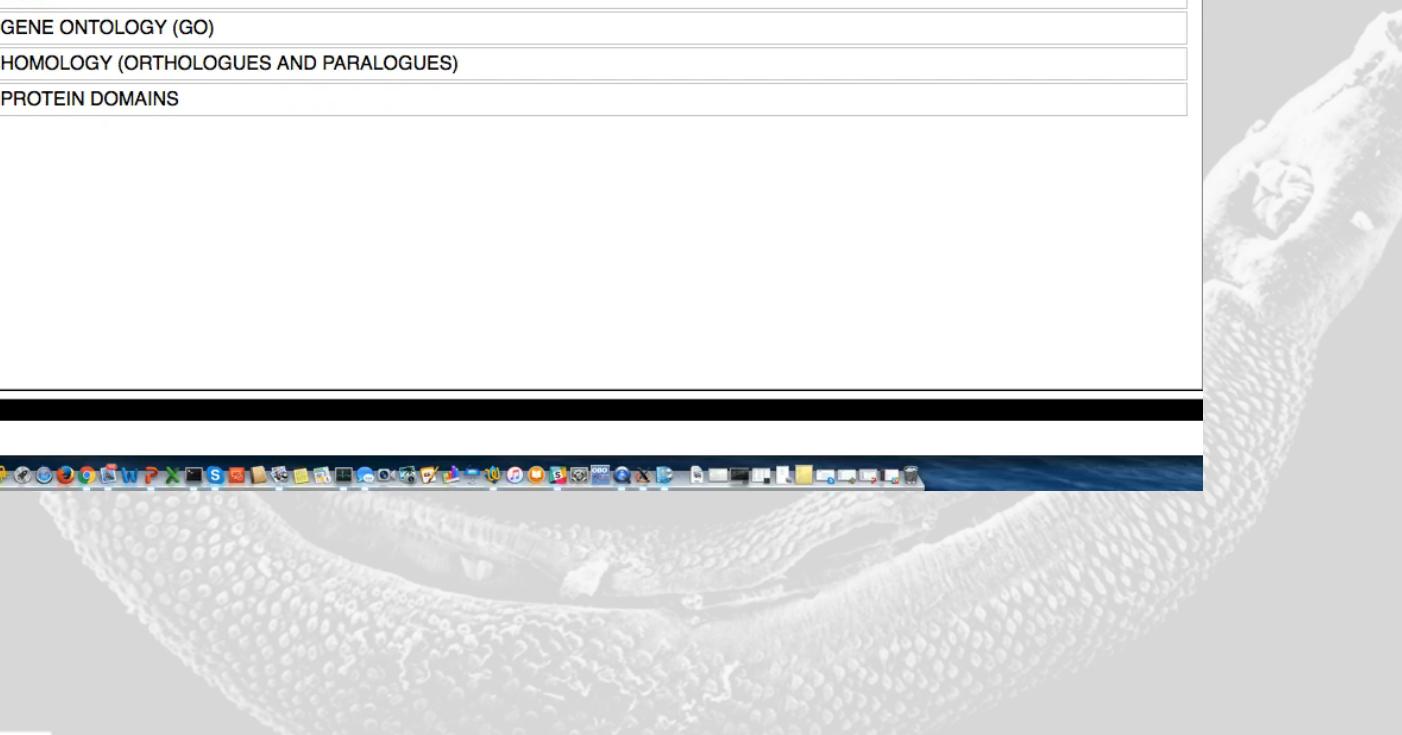
**1. Query Filters**  
[None selected]

**2. Output Attributes**  
Genome project  
Gene stable ID

Please restrict your query using criteria below  
(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)


GENE

GENE ONTOLOGY (GO)

HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

WormBase ParaSite © EBI & WTSI



# BioMart part II answers

4. Retrieve a table that contains:
  - i. WormBase ParaSite gene ID (stable ID),
  - ii. gene name and gene description,
  - iii. InterPro ID and
  - iv. short InterPro description.

QuickTime Player File Edit View Window Help

BioMart - M... WBPS Works! www.ebi.ac... Smp\_03442... Google Calen... www.ebi.ac... An Integrate... (7) Twitter... Boden UK | Jane

parasite.wormbase.org/biomart/martview/45dc17a4137df0a954a9e3680765b8af

Apps Calendar QuickGO Wikipedia webmail ENA Helix Confluence WTSI WBPS JIRA ParaSite EuropePMC UniProt Other Bookmarks

# WormBase ParaSite

WormBase Home | ParaSite Home

New Count Results

Search WormBase ParaSite...

BLAST | BioMart | Downloads

URL XML Perl Help

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

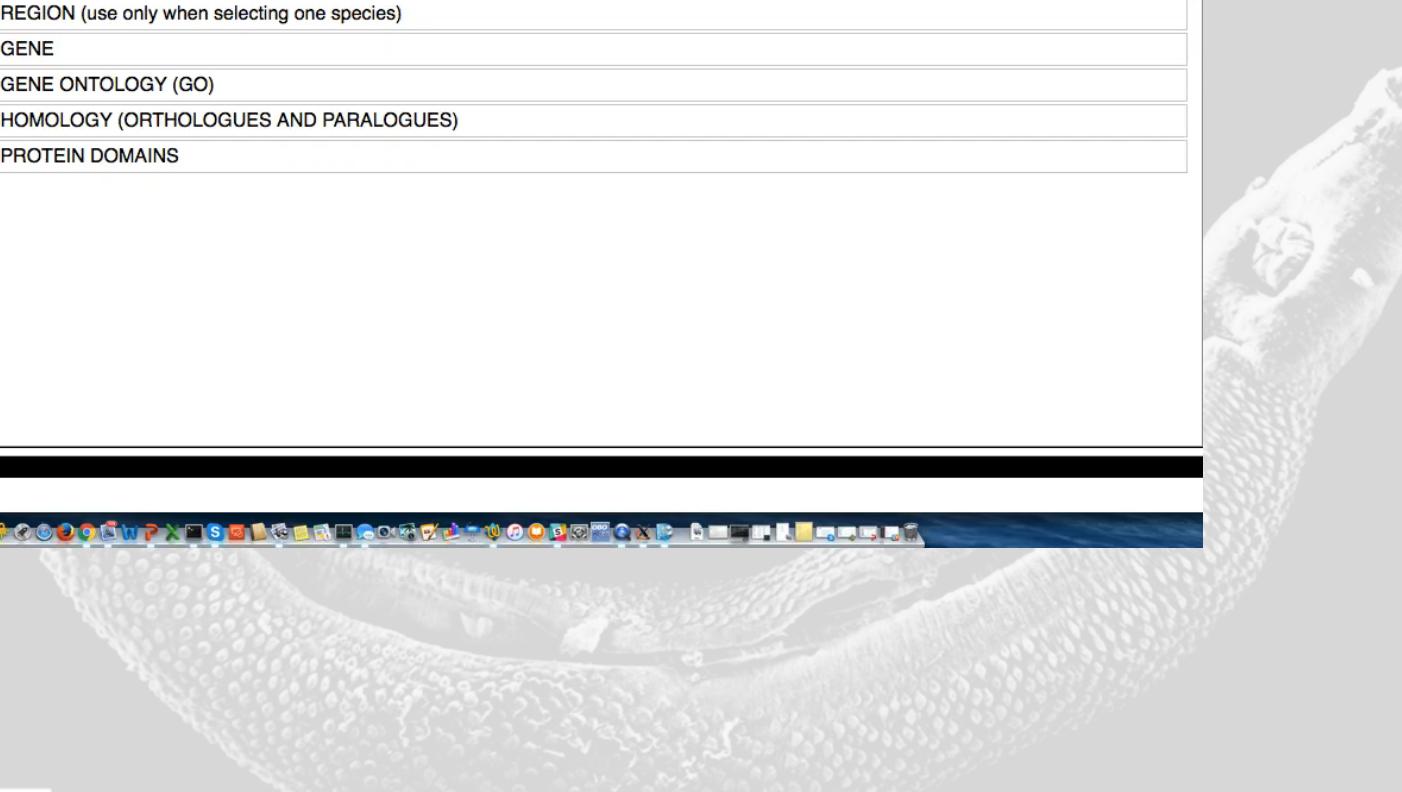
**1. Query Filters**  
[None selected]

**2. Output Attributes**  
Genome project  
Gene stable ID

Please restrict your query using criteria below  
(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)


GENE

GENE ONTOLOGY (GO)

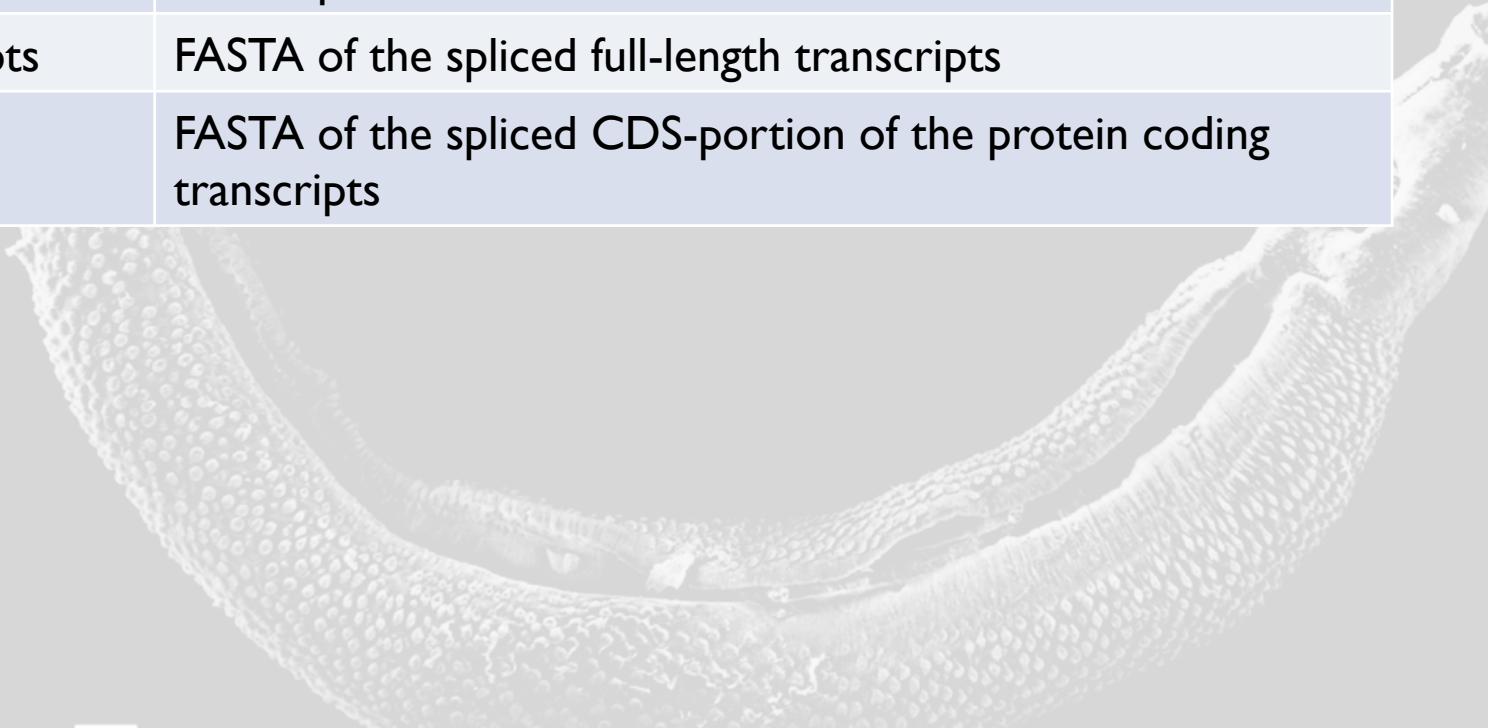
HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

WormBase ParaSite © EBI & WTSI






Bulk downloads and  
programmatic access

# Downloads

- All genomes, proteomes and annotations available to download as compressed flat files
- Ideal for use with alignment software, etc.
- Data from all previous releases available to download
- Please remember to cite the genome provider and WormBase ParaSite

# Downloads – File Formats

|                     |                                                                    |
|---------------------|--------------------------------------------------------------------|
| Genomic             | Raw FASTA genome file                                              |
| Masked Genomic      | Genome FASTA with repeat regions hard-masked                       |
| Soft-masked Genomic | Genome FASTA with repeat regions soft-masked                       |
| Annotations         | GFF3 file containing all annotations                               |
| Proteins            | FASTA protein file                                                 |
| mRNA Transcripts    | FASTA of the spliced full-length transcripts                       |
| CDS Transcripts     | FASTA of the spliced CDS-portion of the protein coding transcripts |



# Access using R

- Access our database directly from R, via the biomaRt package
- Syntax identical to Ensembl
- Very quick access to large amounts of data
- Please don't use excessively (i.e. download the results once then store them locally for processing)

# WormBase ParaSite in R

- Install the biomaRt package:

```
source("http://bioconductor.org/biocLite.R")
biocLite("biomaRt")
```

- Install the biomaRt package:

```
library(biomaRt)
```

# WormBase ParaSite in R

- Establish a connection to WormBase ParaSite

```
mart <- useMart("parasite_mart",
                 dataset = "wbps_eg_gene",
                 host = "parasite.wormbase.org")
```

# WormBase ParaSite in R

- Example: get all the *Schistosoma mansoni* genes with a *C. elegans* orthologue:

```
genes <- getBM(mart = mart,
                 filters = c("species_id_1010",
                            "with_celegans_eg_homologue"),
                 value = list("prjea36577", TRUE),
                 attributes = c("ensembl_gene_id",
                               "celegans_eg_gene"))
head(genes)

  ensembl_gene_id celegans_eg_gene
1    Smp_078570    WBGene00009448
2    Smp_063300    WBGene00004450
3    Smp_210640    WBGene00009305
4    Smp_049930    WBGene00010465
5    Smp_132740    WBGene00001395
6    Smp_132740    WBGene00001396
```

# Language neutral queries

- REST API allows access using any programming language
- For processing large amounts of data: consider whether making one query to BioMart may be more suitable
- Examples provided in Perl, Python, Ruby, Java, Curl and Wget

# Endpoint Catalogue

## Comparative Genomics

| Resource                                                           | Description                                                      |
|--------------------------------------------------------------------|------------------------------------------------------------------|
| <a href="#">GET /rest/genetree/id/:id</a>                          | Retrieves a gene tree dump for a gene tree stable identifier     |
| <a href="#">GET /rest/genetree/member/id/:id</a>                   | Retrieves a gene tree that contains the stable identifier        |
| <a href="#">GET /rest/genetree/member/:symbol/:species/:symbol</a> | Retrieves a gene tree containing the gene identified by a symbol |
| <a href="#">GET /rest/homology/id/:id</a>                          | Retrieves homology information (orthologues) by gene id          |
| <a href="#">GET /rest/homology/symbol/:species/:symbol</a>         | Retrieves homology information (orthologues) by symbol           |

# Endpoint Specifics

## GET genetree/member/id/:id

Retrieves a gene tree that contains the stable identifier

### Parameters

#### Required

| Name | Type          | Description | Default | Example Values |
|------|---------------|-------------|---------|----------------|
| id   | <i>String</i> | A stable ID | -       | WBGene00225050 |

# Endpoint Examples

## Example Requests

[`/rest/genetree/member/symbol/brugia\_malayi\_prjna10729`](#)

[`/Bma-unc-1?content-type=text/x-phyloxml%2Bxml`](#)

Example output

Perl

Python2

Python3

Ruby

Java

Curl

Wget

```
<?xml version="1.0" encoding="UTF-8"?>
<phyloxml xsi:schemaLocation="http://www.phyloxml.org http://www.phyloxml.org/1.10/phyloxml.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.phyloxml.org">
  <phylogeny rooted="true" type="gene tree">
    <clade branch_length="0">
      <confidence type="duplication_confidence_score">0.7311</confidence>
      <taxonomy>
        <id>33208</id>
        <scientific_name>Metazoa</scientific_name>
      </taxonomy>
      <events>
        <type>speciation_or_duplication</type>
        <duplications>1</duplications>
      </events>
      <clade branch_length="0.003861">
        <confidence type="duplication_confidence_score">0.1584</confidence>
        <taxonomy>
```

# Code Examples

## Example Requests

[/rest/genetree/member/symbol/brugia\\_malayi\\_prjna10729](#)

[/Bma-unc-1?content-type=text/x-phyloxml%2Bxml](#)

[Example output](#)

[Perl](#)

[Python2](#)

[Python3](#)

[Ruby](#)

[Java](#)

[Curl](#)

[Wget](#)

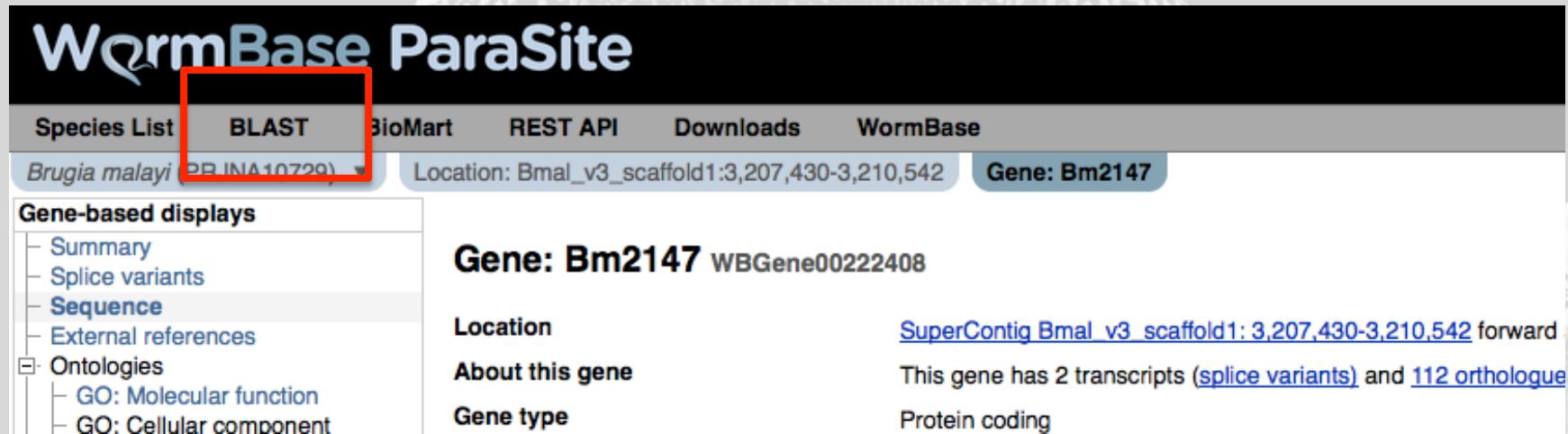
```
1. use strict;
2. use warnings;
3.
4. use HTTP::Tiny;
5.
6. my $http = HTTP::Tiny->new();
7.
8. my $server = 'http://parasite.wormbase.org';
9. my $ext = '/genetree/member/symbol/brugia_malayi_prjna10729/Bma-unc-1?';
10. my $response = $http->get($server.$ext, {
11.     headers => { 'Content-type' => 'text/x-phyloxml+xml' }
12. });
13.
14. die "Failed!\n" unless $response->{success};
15.
16.
17. print "$response->{status} $response->{reason}\n";
18.
```

# Sequence Similarity Search using BLAST



# What is BLAST?

- BLAST = Basic Local Alignment Search Tool
- Sequence similarity tool
- Allows comparison of a **query** sequence, against a **database** of sequences
- Query = your nucleotide or protein sequence
- Database = the genome or proteome of any species


# What is BLAST?

- Input:
  - Nucleotide or protein sequence
  - Search Parameters
- Output:
  - List of all hits ranked in order of statistical significance

# Types of BLAST

| BLAST Type        | Query Sequence                                 | Target Database                 |
|-------------------|------------------------------------------------|---------------------------------|
| BLASTN            | Nucleotide                                     | Genome (nucleotide)             |
| BLASTP            | Peptide                                        | Proteome (peptide)              |
| BLASTX            | Six frame translation of a nucleotide sequence | Proteome (peptide)              |
| TBLASTX (slowest) | Six frame translation of a nucleotide sequence | Six frame translation of genome |
| TBLASTN           | Peptide                                        | Six frame translation of genome |

# Using the ParaSite BLAST



The image shows the WormBase ParaSite interface. At the top, there is a navigation bar with links for Species List, BLAST, BioMart, REST API, Downloads, and WormBase. The BLAST link is highlighted with a red box. Below the navigation bar, the species is set to *Brugia malayi* (PR INA10729). The location of the gene is Bmal\_v3\_scaffold1:3,207,430-3,210,542. The gene identifier is Gene: Bm2147. On the left, there is a sidebar titled "Gene-based displays" with options for Summary, Splice variants, Sequence (which is selected and highlighted in blue), External references, Ontologies (with sub-options for GO: Molecular function and GO: Cellular component), and REST API. The main content area displays the gene information for Bm2147, including its WBGene identifier, location, and gene type (Protein coding). It also mentions that the gene has 2 transcripts and 112 orthologues.

WormBase ParaSite

Species List **BLAST** BioMart REST API Downloads WormBase

*Brugia malayi* (PR INA10729) Location: Bmal\_v3\_scaffold1:3,207,430-3,210,542 Gene: Bm2147

**Gene-based displays**

- Summary
- Splice variants
- Sequence**
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
- REST API

**Gene: Bm2147** WBGene00222408

**Location** SuperContig Bmal\_v3\_scaffold1:3,207,430-3,210,542 forward

**About this gene** This gene has 2 transcripts ([splice variants](#)) and [112 orthologues](#)

**Gene type** Protein coding

Defaults to the species you are currently browsing

# Using the ParaSite BLAST

ferences  
olecular function  
ular component  
logical process  
e Genomics  
ee  
ques  
ues

Print this page

View data

Print this page

Print this page

**Location** SuperContig Bmal\_v3\_scaffold1: 3,207,430-3,210,542 forward strand.

**About this gene** This gene has 2 transcripts ([splice variants](#)) and [112 orthologues](#).

**Gene type** Protein coding

**Annotation Method** Protein-coding model imported from [WormBase](#)

**Transcripts** [Show transcript table](#)

**Marked-up sequence**

[Download sequence](#) [BLAST this sequence](#)

Exons Bm2147 exons All exons in this region

```
>supercontig:B_malayi-3.1:Bmal_v3_scaffold1:3206830:3211142:1
ATTTACTTTCTGTATTTCATGATCTTATCAAACCATTTATTTGAACCTCTTTGT
CTACTCTAAGTCTACTCTACAGAGATCAGCCCTTTGTATTAGAACACCAAGCTAAAC
TCGAGAGTTACTGTATTGTTGACATTGTGTCGTTGATGCTTCTACCATGTCAGT
ATTACTAACATGCAAAATTTCTTCAGATTATAATTGGTTATTCAATAAAATCTTT
TTAAATAATTTCAGTGAATTAGACATTAAATATCAGGCAATATCTGTAAGAACATAAGTCA
TACAACATTGCTGTTCCACCGTAAACTGTCAATTTCATCTCGTTGCAATTATATTG
CAATTTCCTATCATATTGCAAGTTAAATAAAATTGATGTTGCTTCATTTCCTTCAAGA
CAGTTTACTGCAACTGTTCAAGTTAAAGCTTGGTTCAATTATGTCACATC
TGGTTGTTGAGTTGCGCAAATTATTAGAACTAGAATTGATCAGCTATTAAAGGAT
TATGTTTATAAGCAAATATAACGACAAAAGAAGTTATTGATTATAATTGTTGGAT
ATGGACGCTGGCAGTTAGTTGCTGGGTACATTACTTAGTAATGTTCTGTTGATT
TAAATGAGTTGACTTCTATTTCGATCCCTTTCTGTTATAAGGATAGTAATCCA
ATGAATGATTCAACAATTATTGTTAATTCCATTAAACTACGTAAGTGTGATA
```

# Using the ParaSite BLAST

lecular function  
lular component  
logical process  
ve Genomics  
ee  
ual  
er

the this page

## data

ata

is page

work this page

Gene type  
Annotation Method  
Transcripts

## Protein coding

Protein-coding model imported from [WormBase](#) ✓

Show transcript table

## Marked-up sequence

 Download sequence

 BLAST this sequence

**Exons** Bm2147 exons All exons in this region

# Using the ParaSite BLAST

**WormBase ParaSite**

Search WormBase ParaSite... 

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API Downloads WormBase

My Account - bbolt@ebi.ac.uk Logout Help and Documentation

Brugia malayi (PRJNA10729) ▾ Location: Bmal\_v3\_scaffold525:2,308-5,498 ▾ Gene: Bma-eat-4 ▾ Transcript: Bm7483 ▾

**Gene-based displays**

- Summary
- Splice variants
- Sequence**
- External references

**Ontologies**

- GO: Molecular function
- GO: Cellular component
- GO: Biological process

**Comparative Genomics**

- Gene tree
- Orthologues
- Paralogues

**Configure this page**

**Manage your data**

**Export data**

**Share this page**

**Bookmark this page**

**Gene: Bma-eat-4** WBGene00227744

**Location** SuperContig Bmal\_v3\_scaffold525: 2,308-5,498 forward strand.

**About this gene** This gene has 1 transcript (splice variant), 126 orthologues and 7 paralogues.

**Gene type** Protein coding

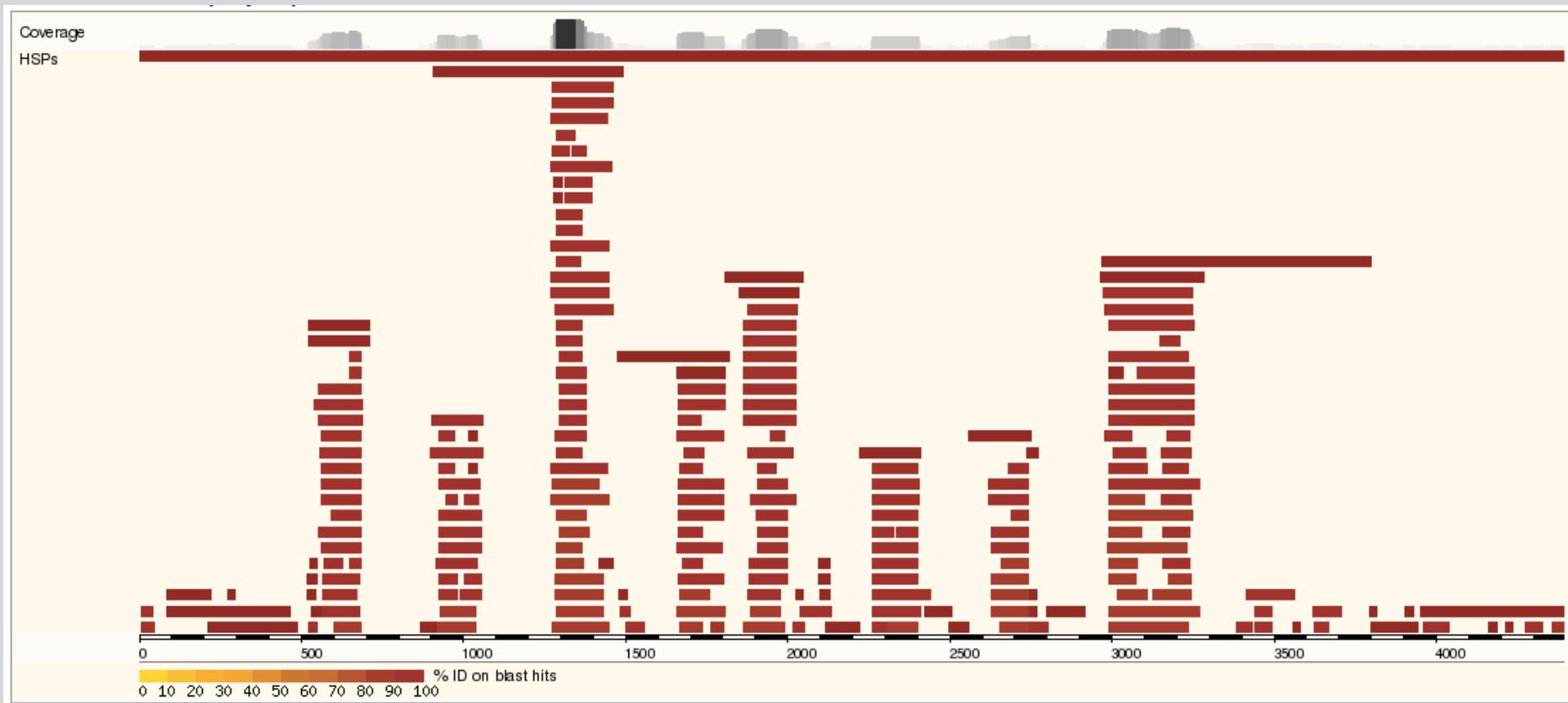
**Annotation Method** Protein-coding model imported from WormBase

**Transcripts** [Hide transcript table](#)

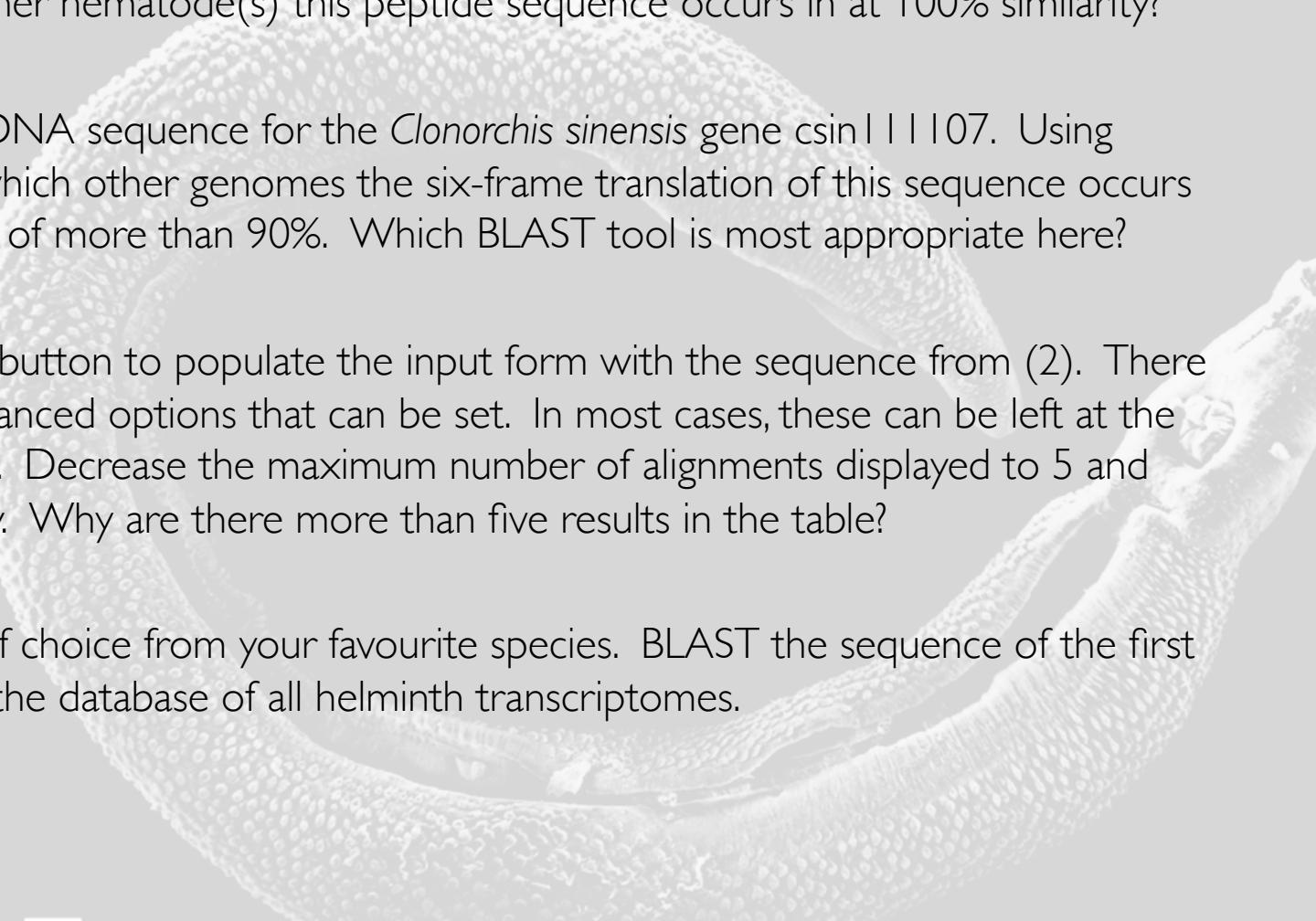
| Name   | Transcript ID | bp   | Protein | Biotype        | UniProt    |
|--------|---------------|------|---------|----------------|------------|
| Bm7483 | Bm7483        | 1459 | 475aa   | Protein coding | AOA0H5SF60 |

**Marked-up sequence**

[Download sequence](#) [BLAST this sequence](#)

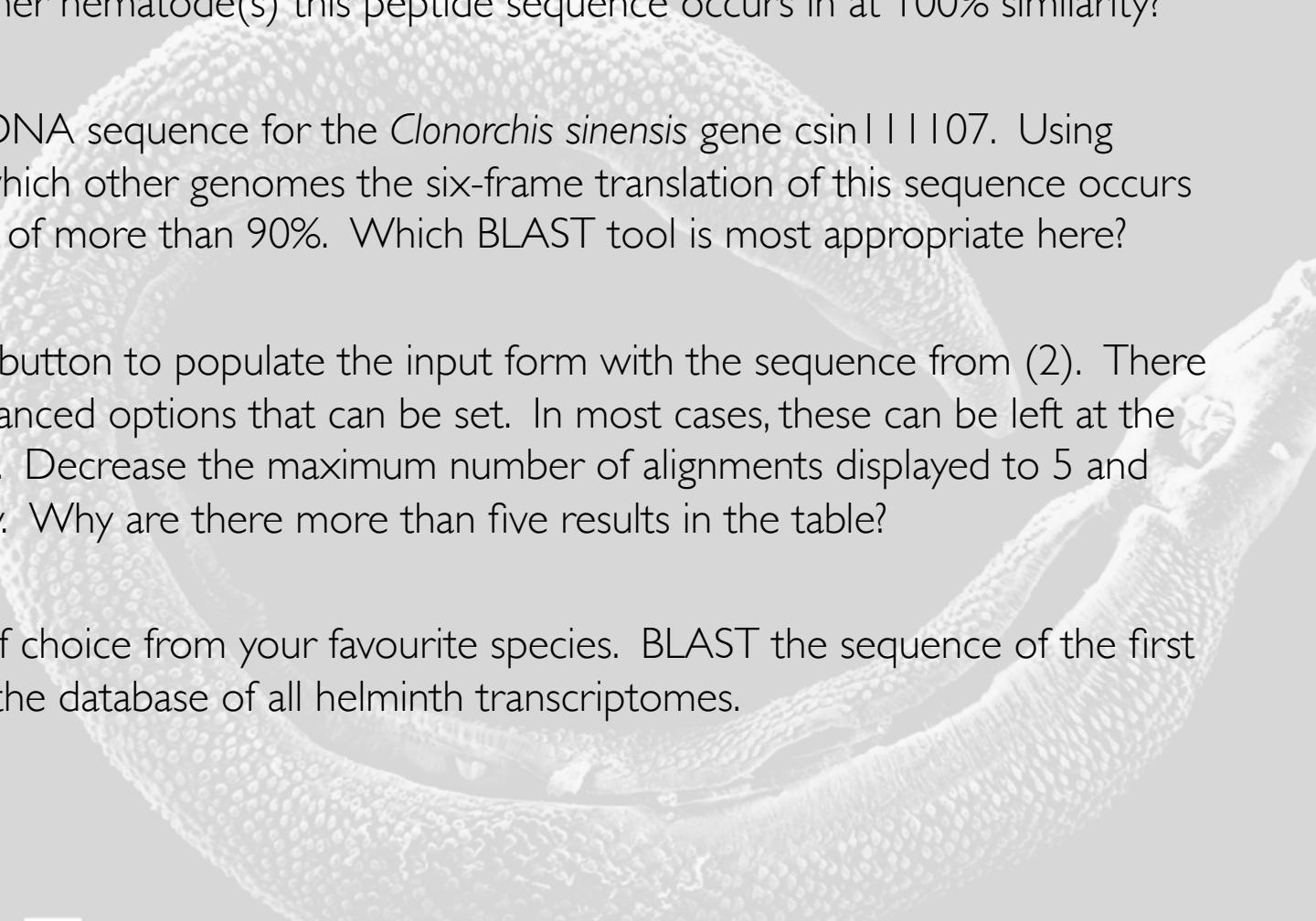

Exons Bma-eat-4 exons All exons in this region

```
>supercontig:B_malayi-3.1:Bmal_v3_scaffold525:1708:6098:1
ATTCACCTCAAAATAACTATATCATAATTGTGTTGCTAAATATAAAAGTAA
ATAATGAAAAACATTAAAAAAAAAAAAAAAAAAATGACAAAATAAAATATAA
TTCCAGATTAACGAGAAAGCAACAAATTATTAACTATAAAAGTTGATTATGT
GAATTAACTTATACTTTAGCTTAAAGGTAAAGAAAGAGGAAATCATTAA
AAAAATATTGCTCAATAATTCTTTATTTAAATTATTTGAATGAATCATAA
AAATTAGAATTGTATTACAATTAAACATTAAATTATTTAATCATATGATAAGAATAAA
TATTATATGGATAATTCCGAAAGTTAAATCTCCGGATAATTACGCTAGAAA
CAGAAACAAATTGCACTGTTTCTTTCTTTTGTGTTTATTTCTGTTTT
GATTATTTATTCATTCAATATGAGAAAAAAATTTTTTTTTAAATA
```


# Making sense of the results

- Score  
Used to assess the biological relevance by describing the alignment quality  
Higher score = higher similarity
- *E*-value  
Similar to (but not the same as) a *p*-value that has been corrected for multiple testing - decreases exponentially as the score increases  
Lower *E*-value = more significant result
- %ID  
Percentage of your query sequence that matches the genome/proteome database

# Making sense of the results




# Practical Exercises



1. Locate the peptide sequence for the *Brugia malayi* gene Bma-eat-4. Using BLAST, find which other nematode(s) this peptide sequence occurs in at 100% similarity?
2. Locate the cDNA sequence for the *Clonorchis sinensis* gene csin11107. Using BLAST, find which other genomes the six-frame translation of this sequence occurs in with a %ID of more than 90%. Which BLAST tool is most appropriate here?
3. Use the 'Edit' button to populate the input form with the sequence from (2). There are many advanced options that can be set. In most cases, these can be left at the default values. Decrease the maximum number of alignments displayed to 5 and run the query. Why are there more than five results in the table?
4. Find a gene of choice from your favourite species. BLAST the sequence of the first exon against the database of all helminth transcriptomes.

# Practical Exercises



1. Locate the peptide sequence for the *Brugia malayi* gene Bma-eat-4. Using BLAST, find which other nematode(s) this peptide sequence occurs in at 100% similarity?
2. Locate the cDNA sequence for the *Clonorchis sinensis* gene csin11107. Using BLAST, find which other genomes the six-frame translation of this sequence occurs in with a %ID of more than 90%. Which BLAST tool is most appropriate here?
3. Use the 'Edit' button to populate the input form with the sequence from (2). There are many advanced options that can be set. In most cases, these can be left at the default values. Decrease the maximum number of alignments displayed to 5 and run the query. Why are there more than five results in the table?
4. Find a gene of choice from your favourite species. BLAST the sequence of the first exon against the database of all helminth transcriptomes.

I. Locate the peptide sequence for the *Brugia malayi* gene Bma-eat-4. Using BLAST, find which other nematode(s) this peptide sequence occurs in at 100% similarity?

**WormBase ParaSite** Version: WBPS6 (WS252) Search WormBase ParaSite...

Species List BLAST BioMart REST API VEP Downloads WormBase My Account - bbolt@ebi.ac.uk Logout Help and Documentation

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

**Species** **BLAST** **BioMart**

**API** **Downloads** **WormBase**

**Announcements**

**Announcing WormBase ParaSite release 6**  
posted 2 months ago  
We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  
posted 1 month ago  
We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [...]

***Brugia malayi* assembly update**  
posted 2 months ago  
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [...]

**Register for a WormBase ParaSite workshop**  
posted 2 months ago  
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

[\[Older\]](#)

**Twitter**

**Tweets** by @WBParasite

 WormBase ParaSite @WBParasite  
This maintenance is now complete. Thank you for your patience. twitter.com/WBParasite/sta... 3h

 WormBase ParaSite @WBParasite  
Important notice: due to essential server maintenance, WormBase ParaSite will be unavailable tomorrow (7th June) between 10:00-11:30 (BST). 23h

 WormBase ParaSite Retweeted   
 **Hayley Bennett** Embed View on Twitter



2. Locate the cDNA sequence for the *Clonorchis sinensis* gene csin111107. Using BLAST, find which other genomes the six-frame translation of this sequence occurs in with a %ID of more than 90%. Which BLAST tool is most appropriate here?

BLASTX or TBLASTX

**WormBase ParaSite** Version: WBPS6 (WS252)

Search WormBase ParaSite... 

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

**Species**  **BLAST**  **BioMart** 

**API**  **Downloads**  **WormBase** 

**Find a genome**

[+] Nematoda (Roundworms) 

[+] Platyhelminthes (Flatworms) 

**Statistics**

- Version: WBPS6 (April 2016)
- WormBase Version: WS252
- 109 genomes, representing 100 species
- 2,189,841 genes

**Announcements**

**Announcing WormBase ParaSite release 6**  posted 2 months ago  
We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness**  posted 1 month ago  
We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [\[...\]](#)

**Brugia malayi assembly update**  posted 2 months ago  
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [\[...\]](#)

**Register for a WormBase ParaSite workshop**  posted 2 months ago  
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

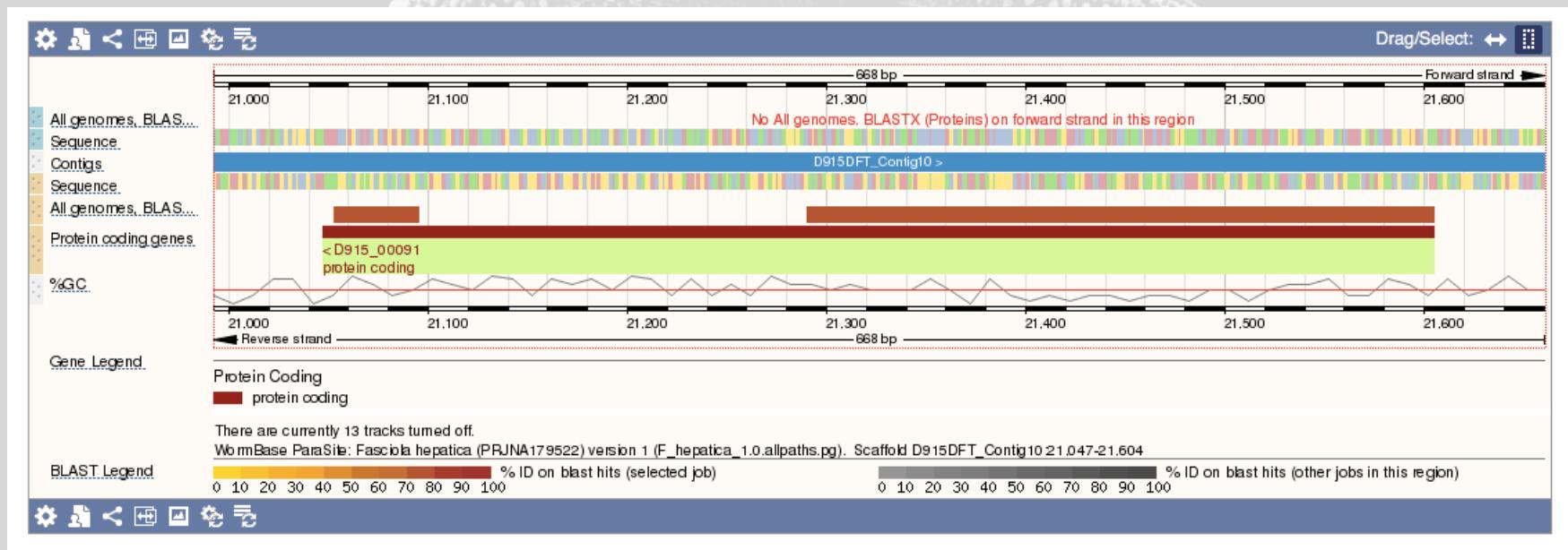
[\[Older\]](#)

**Twitter**

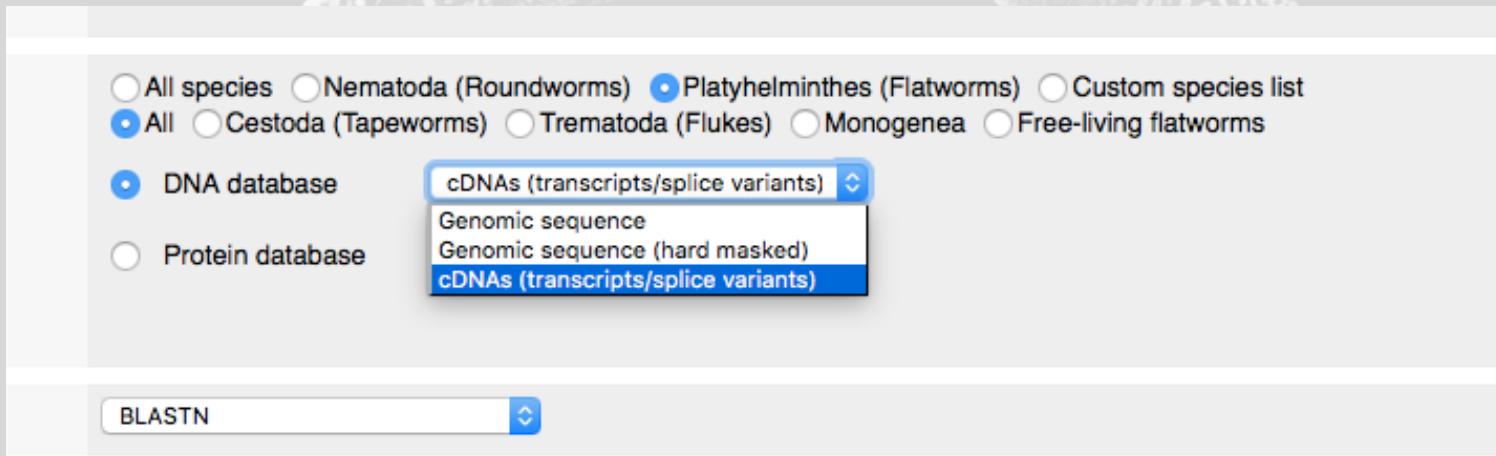
Tweets by @WBParasite

 WormBase ParaSite @WBParasite This maintenance is now complete. Thank you for your patience. [twitter.com/WBParasite/sta...](#)   3h

 WormBase ParaSite @WBParasite Important notice: due to essential server maintenance, WormBase ParaSite will be unavailable tomorrow (7th June) between 10:00-11:30 (BST).   23h


 WormBase ParaSite Retweeted  Hayley Bennett [Embed](#) [View on Twitter](#)

3. Use the 'Edit' button to populate the input form with the sequence from (2). There are many advanced options that can be set. In most cases, these can be left at the default values. Decrease the maximum number of alignments displayed to 5. Why are there more than five results in the table?


| Show/hide columns (8 hidden)         |                                            |                       |                                     |             |        |                          |       |          |       | Filter                      |
|--------------------------------------|--------------------------------------------|-----------------------|-------------------------------------|-------------|--------|--------------------------|-------|----------|-------|-----------------------------|
| Genome                               | Subject name                               | Subject description   | Gene hit                            | Query start | Length | Score                    | E-val | %ID      |       |                             |
| Clonorchis sinensis (PRJDA72781)     | <a href="#">csin111107</a>                 | DNA-binding protein A | <a href="#">csin111107</a>          | 427         | 128    | <a href="#">Sequence</a> | 677   | 7.1E-144 | 100.0 | <a href="#">[Alignment]</a> |
| Clonorchis sinensis (PRJDA72781)     | <a href="#">csin111107</a>                 | DNA-binding protein A | <a href="#">csin111107</a>          | 1           | 108    | <a href="#">Sequence</a> | 478   | 7.1E-144 | 100.0 | <a href="#">[Alignment]</a> |
| Opisthorchis viverrini (PRJNA222628) | <a href="#">T265_14198</a>                 |                       | <a href="#">T265_14198</a>          | 427         | 17     | <a href="#">Sequence</a> | 95    | 2.4E-57  | 100.0 | <a href="#">[Alignment]</a> |
| Opisthorchis viverrini (PRJNA222628) | <a href="#">T265_14198</a>                 |                       | <a href="#">T265_14198</a>          | 1           | 105    | <a href="#">Sequence</a> | 434   | 2.4E-57  | 96.2  | <a href="#">[Alignment]</a> |
| Fasciola hepatica (PRJNA179522)      | <a href="#">D915_00091</a>                 |                       | <a href="#">D915_00091</a>          | 1           | 105    | <a href="#">Sequence</a> | 334   | 9.8E-38  | 72.4  | <a href="#">[Alignment]</a> |
| Fasciola hepatica (PRJEB6687)        | <a href="#">BN1106_s1641B000184.mRNA-1</a> |                       | <a href="#">BN1106_s1641B000184</a> | 1           | 105    | <a href="#">Sequence</a> | 330   | 3.6E-37  | 72.4  | <a href="#">[Alignment]</a> |
| Echinostoma caproni (PRJEB1207)      | <a href="#">ECPE_0000786301-mRNA-1</a>     |                       | <a href="#">ECPE_0000786301</a>     | 1           | 105    | <a href="#">Sequence</a> | 314   | 7.9E-35  | 72.4  | <a href="#">[Alignment]</a> |
| Fasciola hepatica (PRJEB6687)        | <a href="#">BN1106_s1641B000184.mRNA-1</a> |                       | <a href="#">BN1106_s1641B000184</a> | 433         | 14     | <a href="#">Sequence</a> | 51    | 3.6E-37  | 71.4  | <a href="#">[Alignment]</a> |
| Fasciola hepatica (PRJNA179522)      | <a href="#">D915_00091</a>                 |                       | <a href="#">D915_00091</a>          | 433         | 14     | <a href="#">Sequence</a> | 51    | 9.8E-38  | 71.4  | <a href="#">[Alignment]</a> |
| Echinostoma caproni (PRJEB1207)      | <a href="#">ECPE_0000786301-mRNA-1</a>     |                       | <a href="#">ECPE_0000786301</a>     | 427         | 16     | <a href="#">Sequence</a> | 50    | 7.9E-35  | 56.3  | <a href="#">[Alignment]</a> |

This parameter specifies the maximum number of objects in the subject database (i.e. genome or proteome). In this case, the query sequence has matched twice to each gene. This suggests there may be two conserved sequences within the query.

3. Use the ‘Edit’ button to populate the input form with the sequence from (2). There are many advanced options that can be set. In most cases, these can be left at the default values. Decrease the maximum number of alignments displayed to 5. Why are there more than five results in the table?



4. Find a gene of choice from your favourite flatworm species. BLAST the sequence of the first exon against the database of all flatworm transcriptomes.



# Data Discovery & Export with BioMart



# Basics of BioMart

- Advanced search and data export tool
- Produces tables of data or files containing sequence
- Table contents are entirely customisable
- Ideal for working with, or generating, lists of data

| Gene stable ID | Chromosome/scaffold name | Gene start (bp) | Gene end (bp) | Exon ID   | Exon region start (bp) | Exon region end (bp) | cDNA coding start | cDNA coding end |
|----------------|--------------------------|-----------------|---------------|-----------|------------------------|----------------------|-------------------|-----------------|
| A01321         | Scaffold1052             | 8861            | 10795         | A01321.e1 | 8861                   | 9057                 | 1                 | 197             |
| A01321         | Scaffold1052             | 8861            | 10795         | A01321.e2 | 9212                   | 9353                 | 198               | 339             |
| A01321         | Scaffold1052             | 8861            | 10795         | A01321.e3 | 10646                  | 10795                | 340               | 489             |
| A01322         | Scaffold1052             | 19019           | 19861         | A01322.e1 | 19019                  | 19266                | 1                 | 248             |
| A01322         | Scaffold1052             | 19019           | 19861         | A01322.e2 | 19663                  | 19861                | 249               | 447             |
| A02773         | Scaffold1159             | 9064            | 10222         | A02773.e1 | 10184                  | 10222                | 1                 | 39              |
| A02773         | Scaffold1159             | 9064            | 10222         | A02773.e2 | 9064                   | 9354                 | 40                | 330             |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e1 | 190768                 | 190808               | 1                 | 41              |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e2 | 190413                 | 190656               | 42                | 285             |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e3 | 188719                 | 188878               | 286               | 445             |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e4 | 188038                 | 188180               | 446               | 588             |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e5 | 187378                 | 187413               | 589               | 624             |
| A03307         | Scaffold118              | 185300          | 190808        | A03307.e6 | 185300                 | 185401               | 625               | 726             |
| A03308         | Scaffold118              | 191713          | 191954        | A03308.e1 | 191817                 | 191954               | 1                 | 138             |
| A03308         | Scaffold118              | 191713          | 191954        | A03308.e2 | 191713                 | 191775               | 139               | 201             |
| A04991         | Scaffold127              | 310799          | 318815        | A04991.e1 | 318652                 | 318815               | 1                 | 164             |
| A04991         | Scaffold127              | 310799          | 318815        | A04991.e2 | 315979                 | 316050               | 165               | 236             |
| A04991         | Scaffold127              | 310799          | 318815        | A04991.e3 | 314309                 | 314432               | 237               | 360             |
| A04991         | Scaffold127              | 310799          | 318815        | A04991.e4 | 313695                 | 313832               | 361               | 498             |
| A04991         | Scaffold127              | 310799          | 318815        | A04991.e5 | 310799                 | 311017               | 499               | 717             |

# Three simple steps...

- Three simple steps:
  1. Filter the entire database to include only the genes you are interested in (query can be specific or vague)
  2. Choose the data you would like to include in the output file
  3. View or download the results (including direct export to Excel, or CSV for import to R)
- No programming or database knowledge required!

# Data available for export

- Sequences (genomic, cDNA, UTR, flanking, cDNA, peptide)
- Gene IDs, names and descriptions
- Identifiers for data from external databases (e.g. UniProt)
- Gene structure (e.g. exons)
- Protein domains and function (e.g. InterPro, Gene3D, PANTHER etc.)
- Gene ontology terms
- Orthologues and paralogues (in all nematodes, flatworms and a number of non-worm comparators, e.g. human, mouse and rat)

# BioMart Interface

Control buttons:

New = reset form

Count = count results

Results = preview results

Query filters = search terms to restrict the query

Output attributes = select data to add into results (i.e. which columns would you like to appear in your table)

**WormBase ParaSite**

WormBase Home | ParaSite Home

**New** **Count** **Results**

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

**1. Query Filters**  
[None selected]

**2. Output Attributes**  
Genome project  
Gene stable ID

Please restrict your query using criteria  
(If filter values are truncated in any lists, hover over the list for guidance, see the [relevant pages](#) of our documentation)

SPECIES  
 REGION (use only when selecting one species)  
 GENE  
 GENE ONTOLOGY (GO)  
 HOMOLOGY (ORTHOLOGUES AND PARALOGUES)  
 PROTEIN DOMAINS

Filters and attributes appear here



# BioMart Example I – Working with a list

I have a list of *Schistosoma mansoni* genes and would like to find:

1. The gene name and gene description
2. How many of these genes have a human orthologue?
3. The functional annotation of the genes with a human orthologue?

| A             |
|---------------|
| 1 Smp_158080  |
| 2 Smp_078570  |
| 3 Smp_063300  |
| 4 Smp_204760  |
| 5 Smp_145060  |
| 6 Smp_135070  |
| 7 Smp_210640  |
| 8 Smp_160900  |
| 9 Smp_049930  |
| 10 Smp_126600 |
| 11 Smp_132740 |
| 12 Smp_139350 |
| 13 Smp_055760 |
| 14 Smp_141410 |
| 15 Smp_051410 |
| 16 Smp_175210 |
| 17 Smp_169250 |
| 18 Smp_129000 |
| 19 Smp_128010 |
| 20 Smp_079640 |
| 21 Smp_038870 |
| 22 Smp_213140 |
| 23 Smp_161540 |
| 24 Smp_151280 |
| 25 Smp_012010 |
| 26 Smp_181360 |
| 27 Smp_010260 |
| 28 Smp_199660 |

# BioMart Example I – Working with a list



**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads

Schistosoma mansoni (PRJEA36577) Location: Smp.Chr\_1:42,206,486-42,214,230 Gene: GLUCL Transcript: Smp\_104890.1

Gene-based displays

- Summary
- Splice variants
- Sequence
- External references
- Ontologies

  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process

- Comparative Genomics

  - Gene tree
  - Orthologues
  - Paralogues

Configure this page

Manage your data

Export data

Share this page

Bookmark this page

Gene: GLUCL Smp\_104890

Description Location About this gene

Putative cys-loop ligand gated ion channel subunit (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V7T2] Scaffold Smp.Chr\_1:42,206,486-42,214,230 reverse strand.

This gene has 1 transcript (splice variant), 375 orthologues and 3 paralogues.

**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads

Schistosoma mansoni (PRJEA36577) Location: Smp.Chr\_1:42,206,486-42,214,230 Gene: GLUCL Transcript: Smp\_104890.1

Gene-based displays

- Summary
- Splice variants
- Sequence
- External references
- Ontologies

  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process

- Comparative Genomics

  - Gene tree
  - Orthologues
  - Paralogues

Configure this page

Manage your data

Export data

Share this page

Bookmark this page

Gene: GLUCL Smp\_104890

Description Location About this gene

Putative cys-loop ligand gated ion channel subunit (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V7T2] Scaffold Smp.Chr\_1:42,206,486-42,214,230 reverse strand.

This gene has 1 transcript (splice variant), 375 orthologues and 3 paralogues.

**WormBase ParaSite**

Species List BLAST BioMart REST API Downloads

Schistosoma mansoni (PRJEA36577) Location: Smp.Chr\_1:42,206,486-42,214,230 Gene: GLUCL Transcript: Smp\_104890.1

Gene-based displays

- Summary
- Splice variants
- Sequence
- External references
- Ontologies

  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process

- Comparative Genomics

  - Gene tree
  - Orthologues
  - Paralogues

Configure this page

Manage your data

Export data

Share this page

Bookmark this page

Gene: GLUCL Smp\_104890

Description Location About this gene

Putative cys-loop ligand gated ion channel subunit (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V7T2] Scaffold Smp.Chr\_1:42,206,486-42,214,230 reverse strand.

This gene has 1 transcript (splice variant), 375 orthologues and 3 paralogues.

Protein coding

Gene models from Wellcome Trust Sanger Institute Reference Helminth Genomes project

Hide transcript table

Table: Gene-based displays (2 hidden)

Filter

Transcript ID bp Protein Biotype UniProt

Level Smp\_104890.1 1515 504aa Protein coding G4V7T2@T2CSW6@

GO: Molecular function

| Accession   | Term                                            | Evidence | Annotation Source |
|-------------|-------------------------------------------------|----------|-------------------|
| GO:0005230@ | extracellular ligand-gated ion channel activity | IEA      | UniProtKB/Trembl  |

Transcript IDs Smp\_104890.1

Information

Help and Documentation

Citing WormBase ParaSite

About WormBase ParaSite

Data Usage

Contact Us

Disclaimer

Save time by using BioMart!

I have a list of *Schistosoma mansoni* genes and would like to find:

## I. The gene name and gene description

|    |            |
|----|------------|
| 1  | Smp_158080 |
| 2  | Smp_078570 |
| 3  | Smp_063300 |
| 4  | Smp_204760 |
| 5  | Smp_145060 |
| 6  | Smp_135070 |
| 7  | Smp_210640 |
| 8  | Smp_160900 |
| 9  | Smp_049930 |
| 10 | Smp_126600 |
| 11 | Smp_132740 |
| 12 | Smp_139350 |
| 13 | Smp_055760 |
| 14 | Smp_141410 |
| 15 | Smp_051410 |
| 16 | Smp_175210 |
| 17 | Smp_169250 |
| 18 | Smp_129000 |
| 19 | Smp_128010 |
| 20 | Smp_079640 |
| 21 | Smp_038870 |
| 22 | Smp_213140 |
| 23 | Smp_161540 |
| 24 | Smp_151280 |
| 25 | Smp_012010 |
| 26 | Smp_181360 |
| 27 | Smp_010260 |
| 28 | Smp_199660 |
| 29 | Smp_164360 |
| 30 | Smp_058780 |
| 31 | Smp_045420 |
| 32 | Smp_136610 |
| 33 | Smp_172500 |
| 34 | Smp_170950 |

I have a list of *Schistosoma mansoni* genes and would like to find:

2. How many of these genes have a human orthologue?

# WormBase ParaSite

Search WormBase ParaSite...

WormBase Home | ParaSite Home

BLAST | BioMart | Downloads

 New  Count  Results

 URL  XML  Perl  Help

100 / 2550346 Genes

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

## 1. Query Filters

Gene stable ID(s): [ID-list specified]

## 2. Output Attributes

Genome project

Gene stable ID

Gene name

Gene description

Export all results to

File

XLS

Unique results only

Go

Email notification to

View

50

rows as

HTML

Unique results only

| Genome project                        | Gene stable ID | Gene name | Gene description                                                                                                                                        |
|---------------------------------------|----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>schistosoma mansoni</i> prija36577 | Smp_002160     |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4VLL1]                                                                                   |
| <i>schistosoma mansoni</i> prija36577 | Smp_007180     |           | Sr-related ctd associated factor (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VB15]                                                     |
| <i>schistosoma mansoni</i> prija36577 | Smp_010260     |           |                                                                                                                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_012010     | FOXO      | Forkhead transcription factor (inferred by orthology to a protein) [Source:UniProtKB;Acc:A6XDL3]                                                        |
| <i>schistosoma mansoni</i> prija36577 | Smp_013610     |           |                                                                                                                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_018150     |           | Putative mannosey-oligosaccharide alpha-1,2-mannosidase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VP10]                              |
| <i>schistosoma mansoni</i> prija36577 | Smp_029520     |           | Villin, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LW89]                                                                     |
| <i>schistosoma mansoni</i> prija36577 | Smp_036550     |           |                                                                                                                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_038870     |           | NADH-ubiquinone oxidoreductase, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LUK7]                                             |
| <i>schistosoma mansoni</i> prija36577 | Smp_044010     |           | Tropomyosin-1 [Source:UniProtKB/Swiss-Prot;Acc:P42637]                                                                                                  |
| <i>schistosoma mansoni</i> prija36577 | Smp_045420     |           | Adiponectin receptor, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LXQ3]                                                       |
| <i>schistosoma mansoni</i> prija36577 | Smp_046890     |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4VCL8]                                                                                   |
| <i>schistosoma mansoni</i> prija36577 | Smp_048430     | TGR       | Thioredoxin glutathione reductase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V8J4]                                                    |
| <i>schistosoma mansoni</i> prija36577 | Smp_049930     |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4LWN1]                                                                                   |
| <i>schistosoma mansoni</i> prija36577 | Smp_051410     |           | Septate junction protein (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LY05]                                                             |
| <i>schistosoma mansoni</i> prija36577 | Smp_055760     |           | ATP-dependent zinc metalloprotease YME1 homolog [Source:UniProtKB/Swiss-Prot;Acc:P54813] (projected from <i>Caenorhabditis elegans</i> ortholog ymel-1) |
| <i>schistosoma mansoni</i> prija36577 | Smp_058780     |           |                                                                                                                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_060480     |           | Putative copine (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V6J0]                                                                      |
| <i>schistosoma mansoni</i> prija36577 | Smp_063300     |           | 60S ribosomal protein L36-like protein; Putative 60s ribosomal protein L36e [Source:UniProtKB/TrEMBL;Acc:Q15ET2]                                        |
| <i>schistosoma mansoni</i> prija36577 | Smp_069170     |           | Putative cation efflux protein/ zinc transporter (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V1P1]                                     |
| <i>schistosoma mansoni</i> prija36577 | Smp_074990     |           | Regulator of chromosome condensation-related (inferred by orthology to a protein) [Source:UniProtKB;Acc:C4QHH6]                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_075110     |           | Putative rad1 DNA damage checkpoint protein (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VH02]                                          |
| <i>schistosoma mansoni</i> prija36577 | Smp_077790     |           | Putative histone H2B (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VL73]                                                                 |
| <i>schistosoma mansoni</i> prija36577 | Smp_078570     |           | Putative zinc finger protein (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VM27]                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_079640     |           | Putative monocarboxylate transporter (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V7W3]                                                 |
| <i>schistosoma mansoni</i> prija36577 | Smp_085080     |           |                                                                                                                                                         |
| <i>schistosoma mansoni</i> prija36577 | Smp_093760     |           | Strain Puerto Rico chromosome W, complete genome [Source:UniProtKB/TrEMBL;Acc:G4VTD3]                                                                   |
| <i>schistosoma mansoni</i> prija36577 | Smp_120620     |           | Amine GPCR, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LW20]                                                                 |

I have a list of *Schistosoma mansoni* genes and would like to find:

3. The functional annotation of the genes with a human orthologue?

# WormBase ParaSite

Search WormBase ParaSite...

BLAST | BioMart | Downloads

 URL  XML  Perl  Help

 New  Count  Results

47 / 2550346 Genes

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

## 1. Query Filters

Gene stable ID(s): [ID-list specified]

Orthologue(s) in Human: With

## 2. Output Attributes

Genome project

Gene stable ID

Gene name

Gene description

Human gene stable ID

Export all results to   XLS  Unique results only  Go

Email notification to

View   rows as    Unique results only

| Genome project                                 | Gene stable ID             | Gene name | Gene description                                                                                                          | Human gene stable ID            |
|------------------------------------------------|----------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_002160</a> |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4VLL1]                                                     | <a href="#">ENSG00000178028</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_007180</a> |           | Sr-related ctd associated factor (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VB15]                       | <a href="#">ENSG00000085872</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_010260</a> |           |                                                                                                                           | <a href="#">ENSG00000136936</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_013610</a> |           |                                                                                                                           | <a href="#">ENSG00000170264</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_013610</a> |           |                                                                                                                           | <a href="#">ENSG00000156050</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_018150</a> |           | Putative mannose-oligosaccharide alpha-1,2-mannosidase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VP10] | <a href="#">ENSG00000111885</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_018150</a> |           | Putative mannose-oligosaccharide alpha-1,2-mannosidase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VP10] | <a href="#">ENSG00000198162</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_018150</a> |           | Putative mannose-oligosaccharide alpha-1,2-mannosidase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4VP10] | <a href="#">ENSG00000117643</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_038870</a> |           | NADH-ubiquinone oxidoreductase, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LUK7]               | <a href="#">ENSG00000023228</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_044010</a> |           | Tropomyosin-1 [Source:UniProtKB/Swiss-Prot;Acc:P42637]                                                                    | <a href="#">ENSG00000167460</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_044010</a> |           | Tropomyosin-1 [Source:UniProtKB/Swiss-Prot;Acc:P42637]                                                                    | <a href="#">ENSG00000140416</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_044010</a> |           | Tropomyosin-1 [Source:UniProtKB/Swiss-Prot;Acc:P42637]                                                                    | <a href="#">ENSG00000198467</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_044010</a> |           | Tropomyosin-1 [Source:UniProtKB/Swiss-Prot;Acc:P42637]                                                                    | <a href="#">ENSG00000143549</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_045420</a> |           | Adiponectin receptor, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LXQ3]                         | <a href="#">ENSG0000006831</a>  |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_045420</a> |           | Adiponectin receptor, putative (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4LXQ3]                         | <a href="#">ENSG00000159346</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_046890</a> |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4VCL8]                                                     | <a href="#">ENSG00000196850</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_048430</a> | TGR       | Thioredoxin glutathione reductase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V8J4]                      | <a href="#">ENSG00000197763</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_048430</a> | TGR       | Thioredoxin glutathione reductase (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V8J4]                      | <a href="#">ENSG00000198431</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_049930</a> |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4LWN1]                                                     | <a href="#">ENSG00000148343</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_049930</a> |           | Putative uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G4LWN1]                                                     | <a href="#">ENSG00000180488</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_058780</a> |           |                                                                                                                           | <a href="#">ENSG00000105617</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_060480</a> |           | Putative copine (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V6J0]                                        | <a href="#">ENSG00000139117</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_060480</a> |           | Putative copine (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V6J0]                                        | <a href="#">ENSG00000144550</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_060480</a> |           | Putative copine (inferred by orthology to a protein) [Source:UniProtKB;Acc:G4V6J0]                                        | <a href="#">ENSG00000124772</a> |
| <a href="#">schistosoma_mansoni_priea36577</a> | <a href="#">Smp_063300</a> |           | 60S ribosomal protein L36-like protein; Putative 60s ribosomal protein L36e [Source:UniProtKB/TrEMBL;Acc:Q15FT2]          | <a href="#">ENSG00000130255</a> |

# BioMart Example 2 – Generating a list

I think a novel drug targets transmembrane signalling receptor activity in *Brugia* species. I would like to model this in *C. elegans*, so would like a list of orthologues.

Therefore I want to generate a list of *Brugia* genes, which:

- Do not have an orthologue in humans
- Are associated with transmembrane signalling receptor activity
- Annotated with the *C. elegans* orthologue, if available

I want to generate a list of *Brugia* genes, which do not have an orthologue in humans, are associated with transmembrane signalling receptor activity and annotated with the *C. elegans* orthologue, if available

# WormBase ParaSite

Search WormBase ParaSite...

BLAST | BioMart | Downloads

 URL  XML  Perl  Help

WormBase Home | ParaSite Home

 New  Count  Results

BioMart allows the fast export of data tables and sequence in just a few steps:

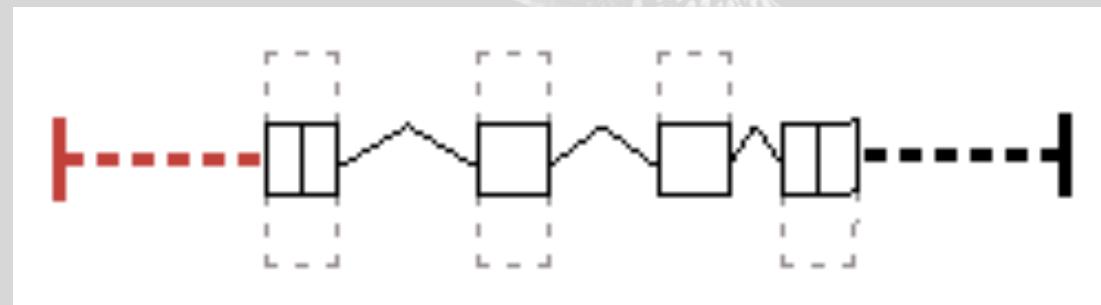
1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

## 1. Query Filters

[None selected]

## 2. Output Attributes

Genome project  
Gene stable ID


### Please restrict your query using criteria below

(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

- SPECIES** 
- REGION (use only when selecting one species)
- GENE
- GENE ONTOLOGY (GO)
- HOMOLOGY (ORTHOLOGUES AND PARALOGUES)
- PROTEIN DOMAINS

# BioMart Example 3 – Retrieving sequences

I would like to retrieve the sequence located 500bp upstream of each *Brugia malayi* gene



I would like to retrieve the sequence located 500bp upstream of each *Brugia malayi* gene

# WormBase ParaSite

Search WormBase ParaSite...

BLAST | BioMart | Downloads

 URL  XML  Perl  Help

WormBase Home | ParaSite Home

 New  Count  Results

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

## 1. Query Filters

[None selected]

## 2. Output Attributes

Genome project

Gene stable ID

### Please restrict your query using criteria below

(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)

GENE

GENE ONTOLOGY (GO)

HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

# BioMart Summary

- Use when working with lists of data, for generating lists of genes and for retrieving sequence
- All data from the website is available
- No programming knowledge required
- Export directly to Excel or CSV for import to R
- Contact us if you are unsure how to construct a query (contact link at bottom of website)

# Coming soon... (release 7 in August)

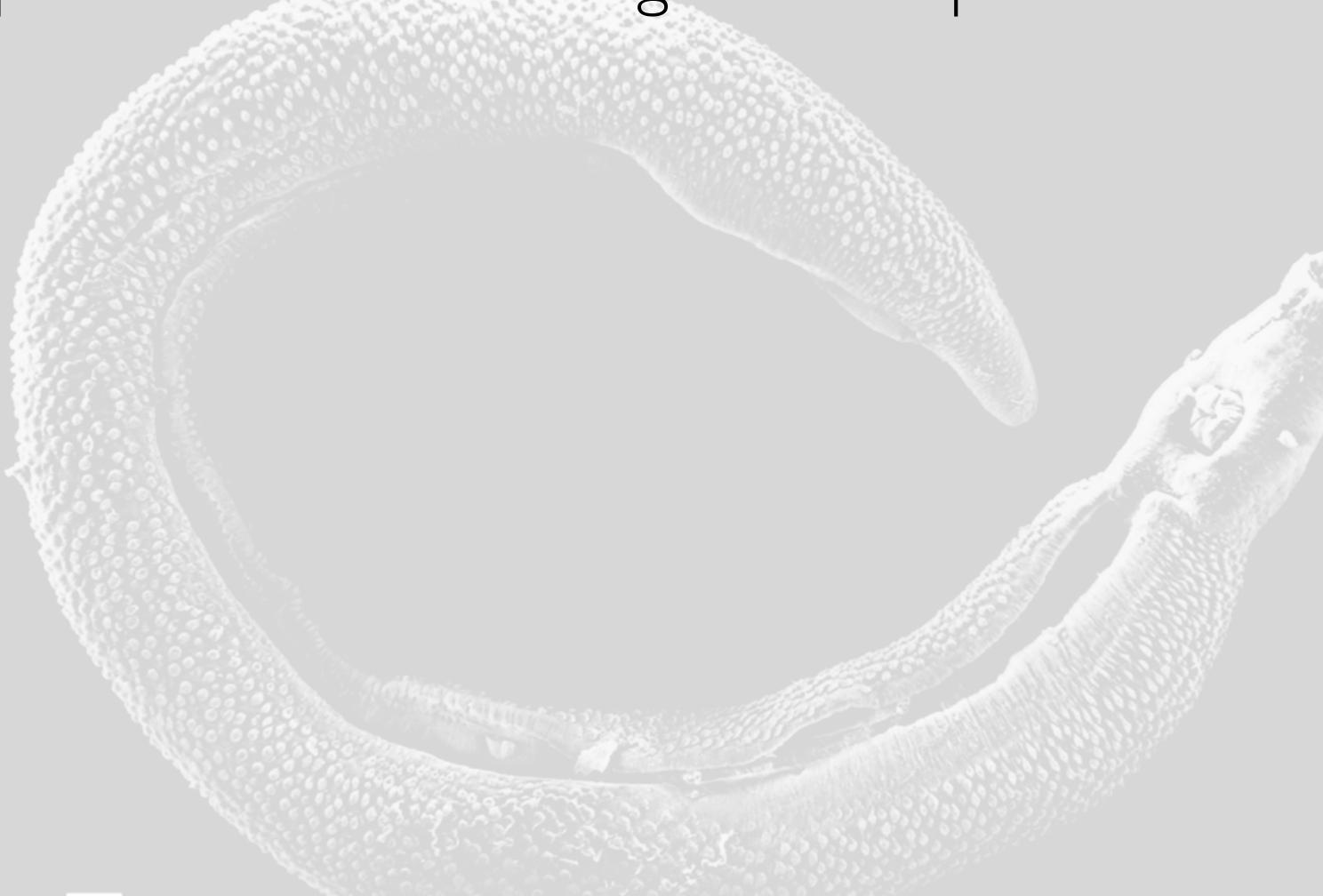
**HOMOLOGY (ORTHOLOGUES AND PARALOGUES)**

Restrict results to genes with orthologues in...

Caenorhabditis elegans [WS252]  
Drosophila melanogaster  
Human  
Mouse  
Saccharomyces cerevisiae  
Zebrafish  
Acanthocheilonema viteae (PRJEB4306)  
Amphimedon queenslandica  
Ancylostoma caninum (PRJNA72585)  
Ancylostoma ceylanicum (PRJNA231479)  
Ancylostoma ceylanicum (PRJNA72583)  
Ancylostoma duodenale (PRJNA72581)  
Angiostrongylus cantonensis (PRJEB493)  
Angiostrongylus costaricensis (PRJEB494)  
Anisakis simplex (PRJEB496)  
Ascaris lumbricoides (PRJEB4950)  
Ascaris suum (PRJNA62057)  
Ascaris suum (PRJNA80881)  
Brugia malayi (PRJNA10729) [WS252]  
Brugia pahangi (PRJEB497)

Restrict results to genes without orthologues in...

Caenorhabditis elegans [WS252]  
Drosophila melanogaster  
Human  
Mouse  
Saccharomyces cerevisiae  
Zebrafish  
Acanthocheilonema viteae (PRJEB4306)  
Amphimedon queenslandica  
Ancylostoma caninum (PRJNA72585)  
Ancylostoma ceylanicum (PRJNA231479)  
Ancylostoma ceylanicum (PRJNA72583)  
Ancylostoma duodenale (PRJNA72581)  
Angiostrongylus cantonensis (PRJEB493)  
Angiostrongylus costaricensis (PRJEB494)  
Anisakis simplex (PRJEB496)  
Ascaris lumbricoides (PRJEB4950)  
Ascaris suum (PRJNA62057)  
Ascaris suum (PRJNA80881)  
Brugia malayi (PRJNA10729) [WS252]  
Brugia pahangi (PRJEB497)


Restrict results to genes with/without...

With  
 Without

PROTEIN DOMAINS

# Exercises – Part I

- <http://parasite.wormbase.org/workshop>



# Exercise |

## WormBase ParaSite

WormBase Home | ParaSite Home

 New  Count  Results

Search WormBase ParaSite...

BLAST | BioMart | Downloads

 URL  XML  Perl  Help

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

### 1. Query Filters

[None selected]

### 2. Output Attributes

Genome project

Gene stable ID

### Please restrict your query using criteria below

(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)

GENE

GENE ONTOLOGY (GO)

HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

# Exercise 2

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

### 1. Query Filters

[None selected]

### 2. Output Attributes

Genome project  
Gene stable ID

#### Please restrict your query using criteria below

(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)

GENE

GENE ONTOLOGY (GO)

HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

# Exercise 3

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

### 1. Query Filters

[None selected]

### 2. Output Attributes

Genome project  
Gene stable ID

#### Please restrict your query using criteria below

(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

SPECIES

REGION (use only when selecting one species)

GENE

GENE ONTOLOGY (GO)

HOMOLOGY (ORTHOLOGUES AND PARALOGUES)

PROTEIN DOMAINS

# Exercise 4

**WormBase ParaSite**

WormBase Home | ParaSite Home

**New** **Count** **Results**

Search WormBase ParaSite...

BLAST | BioMart | Downloads

★ URL | ▶ XML | ⚡ Perl | ⓧ Help

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page

**1. Query Filters**

[None selected]

**2. Output Attributes**

Genome project  
Gene stable ID

Please restrict your query using criteria below  
(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

- SPECIES
- REGION (use only when selecting one species)
- GENE
- GENE ONTOLOGY (GO)
- HOMOLOGY (ORTHOLOGUES AND PARALOGUES)
- PROTEIN DOMAINS

# Exercise 5

**WormBase ParaSite**

WormBase Home | ParaSite Home

Search WormBase ParaSite...

BLAST | BioMart | Downloads

**New** **Count** **Results** **URL** **XML** **Perl** **Help**

BioMart allows the fast export of data tables and sequence in just a few steps:

1. Select your 'Query Filters' (these are search parameters that define your results)
2. Choose your 'Output Attributes' (what you would like to include in your results table or file)
3. Hit the 'Results' button at the top of this page


**1. Query Filters**  
[None selected]

**2. Output Attributes**  
Genome project  
Gene stable ID

Please restrict your query using criteria below  
(If filter values are truncated in any lists, hover over the list item to see the full text)  
For guidance, see the [relevant pages](#) of our documentation.

- SPECIES
- REGION (use only when selecting one species)
- GENE
- GENE ONTOLOGY (GO)
- HOMOLOGY (ORTHOLOGUES AND PARALOGUES)
- PROTEIN DOMAINS

# Variant Effect Predictor (VEP)



# Introduction to the VEP

- Determine the effect of your variants:
  - SNPs
  - Insertions
  - Deletions
  - CNVs
  - Structural variants
- Input: coordinates of the variant and nucleotide change (or VCF file)

# Introduction to the VEP

- Output:
  - Genes and transcripts affected by the variants
  - Location of the variants (e.g. upstream of a transcript, in coding sequence, in ncRNA, etc)
  - Consequence of the variant on protein sequence (e.g. stop gained/lost, missense, frameshift, synonymous, non-synonymous, etc)
- View results in table and on genome browser

# Introduction to VEP

- Runs online using our servers (ideal for small number of variants)
- Possible to download and run locally for large amounts of data
  - Pre-computed “VEP caches” available for use offline

# Using the VEP

**WormBase ParaSite** Version: WBPS6 (WS252) Search WormBase ParaSite...

Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

**Species**  **BLAST**  **BioMart** 

**API**  **Downloads**  **WormBase** 

**Announcements**

**Announcing WormBase ParaSite release 6** posted 1 month ago  
We are pleased to announce the sixth release of WormBase ParaSite.

**Blog**

**Featured Paper: Glucose and Glycogen Metabolism in *B. malayi* Is Associated with Wolbachia Symbiont Fitness** posted 1 month ago  
We would like to draw your attention to a paper published by Denis Voronin, et. al on the influence of host metabolism on symbiont fitness: Denis Voronin, Saheed Bachu, Michael Shlossman, Thomas R. Unnasch, Elodie Ghedin, Sara Lustigman "Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with Wolbachia Symbiont Fitness", PLoS One. 2016 Apr [\[...\]](#)

**Brugia malayi assembly update** posted 2 months ago  
The new release of WormBase (WS252) is the first one to feature the new and updated version 4 of the *Brugia malayi* assembly. Due to additional optical mapping, as well as new long-range PacBio sequencing and additional reassembly work conducted to integrate all available data, it was possible to scaffold the 88.2Mbp assembly into 5 chromosomes [\[...\]](#)

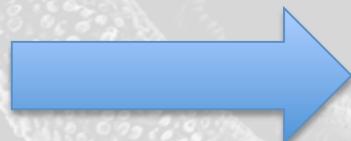
**Register for a WormBase ParaSite workshop** posted 2 months ago  
To help our users make the most of this valuable resource, we are visiting universities and institutes to provide hands-on training sessions.

**Featured Paper: Allergy the Price of Immunity** posted 3 months ago  
We would like to draw your attention to a paper recently published in PLOS Computational Biology: Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity by Nidhi Tyagi. It is thought that part of our immune system has evolved to combat and provide immunity against infection by parasitic worms. However, in the absence [\[...\]](#)

**Twitter**

**Tweets** by @WBParasite

 WormBase ParaSite Retweeted 


 **Hayley Bennett** @HayleyMBennett Wow @ProtocolIO publishing neat&reproducible research methods! Great parasitology example-how to culture tapeworms. [twitter.com/GigaScience/st...](#)   17h

 WormBase ParaSite Retweeted 

 **NaturalHistoryMuseum** @NHM\_London You can learn more about Schistosomes and their fellow parasites at #ParasitesDay, Fri 1 Jun [nhm.ac.uk/visit/exhibiti...](#)  

# Other variation data

- Starting in WBPS7 (due August 2016), we will display data from the European Variation Archive (EVA)
- Simply deposit your own variation data in EVA and it will display automatically in the next release of WormBase ParaSite



WormBase ParaSite

# Gene Variation Table

WormBase ParaSite Version: WBPS31 (WS254)

Search WormBase ParaSite... 

e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

HMMER Species List BLAST BioMart REST API VEP Downloads WormBase

Login Register Help and Documentation

Sorghum bicolor Location: 1:257,765-268,116 Gene: Sb01g000355

**Gene-based displays**

- Summary
- Splice variants
- Sequence
- External references
- Ontologies
  - GO: Molecular function
  - GO: Cellular component
  - GO: Biological process
- Literature
- Comparative Genomics
  - Gene tree
  - Orthologues
  - Paralogues
- Variation
  - Variation Table**
  - Variation Image

**Gene: Sb01g000355**

**Description** RNA-binding ASCH domain protein [Source:Projected from *Arabidopsis thaliana* (AT2G20410) TAIR;Acc:AT2G20410]

**Location** Chromosome 1: 251,508-255,065 reverse strand.

**About this gene** This gene has 2 transcripts (splice variants).

**Gene type** Protein coding

**Annotation Method** Gene annotation by JGI through a process of automatic and manual curation

**Transcripts** [Hide transcript table](#)

| Name  | Transcript ID | bp   | Protein | Biotype        |
|-------|---------------|------|---------|----------------|
| Novel | Sb01g000355.1 | 1457 | 342aa   | Protein coding |
| Novel | Sb01g000355.2 | 1447 | 318aa   | Protein coding |

[Show/hide columns \(2 hidden\)](#) [Filter](#)

**Export data**

**Share this page**

**Ensembl Plants is produced in collaboration with Gramene**

**Variation Table**

| Show       | All       | entries          | Show/hide columns | Filter  |                         |               |
|------------|-----------|------------------|-------------------|---------|-------------------------|---------------|
| Variant ID | Study     | Genomic Position | Type              | Alleles | Most Severe Consequence | Transcript    |
| vcZ2KJ20E  | PRJEB9507 | 247192           | SNV               | T/A     | downstream_gene_variant | Sb01g000355.2 |
| vcZ2KJ20E  | PRJEB9507 | 247192           | SNV               | T/A     | downstream_gene_variant | Sb01g000355.1 |
| vcZ2KJ20F  | PRJEB9507 | 247220           | SNV               | T/A     | downstream_gene_variant | Sb01g000355.2 |
| vcZ2KJ20F  | PRJEB9507 | 247220           | SNV               | T/A     | downstream_gene_variant | Sb01g000355.1 |
| vcZ2KJ20G  | PRJEB9507 | 247508           | SNV               | C/T     | downstream_gene_variant | Sb01g000355.2 |
| vcZ2KJ20G  | PRJEB9507 | 247508           | SNV               | C/T     | downstream_gene_variant | Sb01g000355.1 |
| vcZ2KJ20H  | PRJEB9507 | 247542           | SNV               | C/A     | downstream_gene_variant | Sb01g000355.2 |
| vcZ2KJ20H  | PRJEB9507 | 247542           | SNV               | C/A     | downstream_gene_variant | Sb01g000355.1 |

# Variant Information Page

**WormBase ParaSite** Version: WBPS31 (WS254)

Search WormBase ParaSite...  
e.g. *O. volvulus*, PRJNA60051, WBGene00262434, Bma-eat-4, eat-4 or metallopeptidase

HMMER Species List BLAST BioMart REST API VEP Downloads WormBase Login Register Help and Documentation

Sorghum bicolor ▾ Location: 1:257,765-268,116

**Location-based displays**

- Whole genome
- Region in detail
- Other genome browsers
  - Phytozome

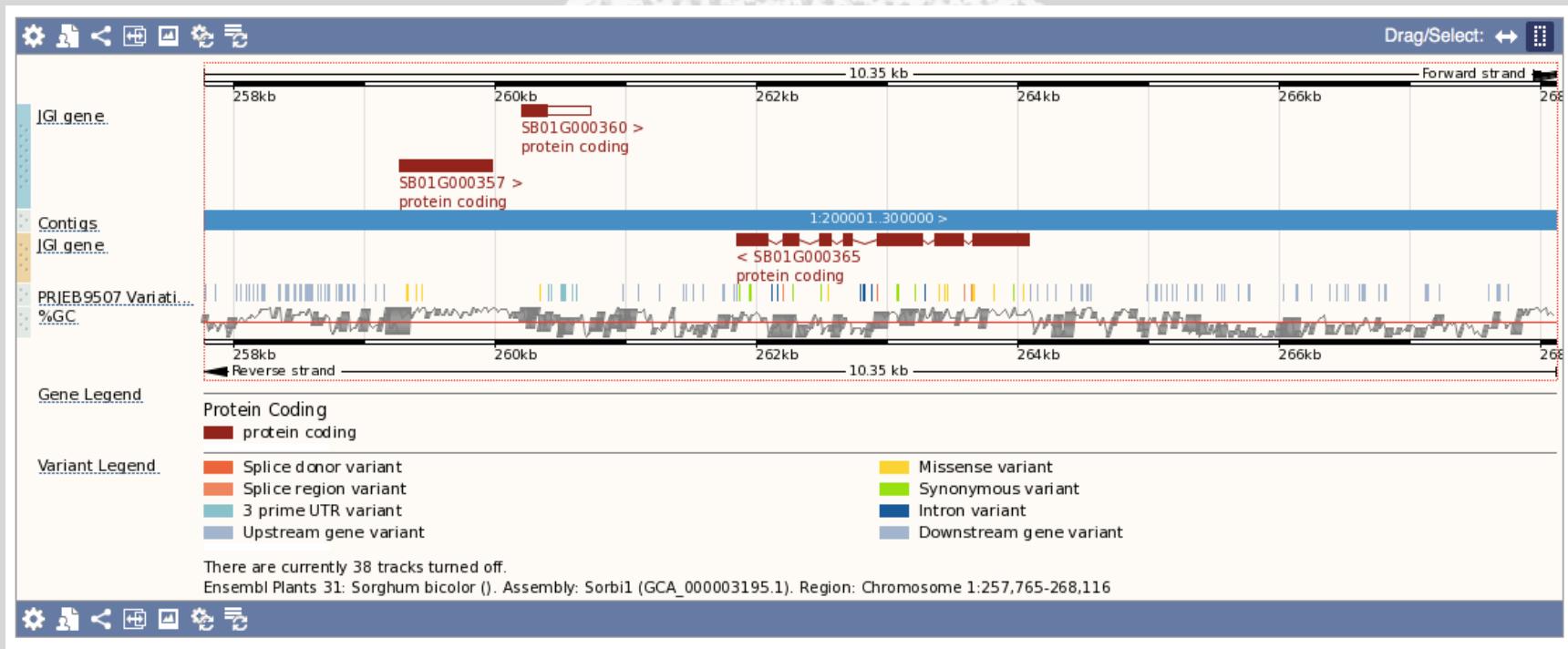
**Variant Information**

| Variant ID | Scaffold/Chromosome | Start  | End | Reference Allele | Alternative Allele |
|------------|---------------------|--------|-----|------------------|--------------------|
| vcZ2KJ26l  | 1                   | 260344 | -   | T                | C                  |

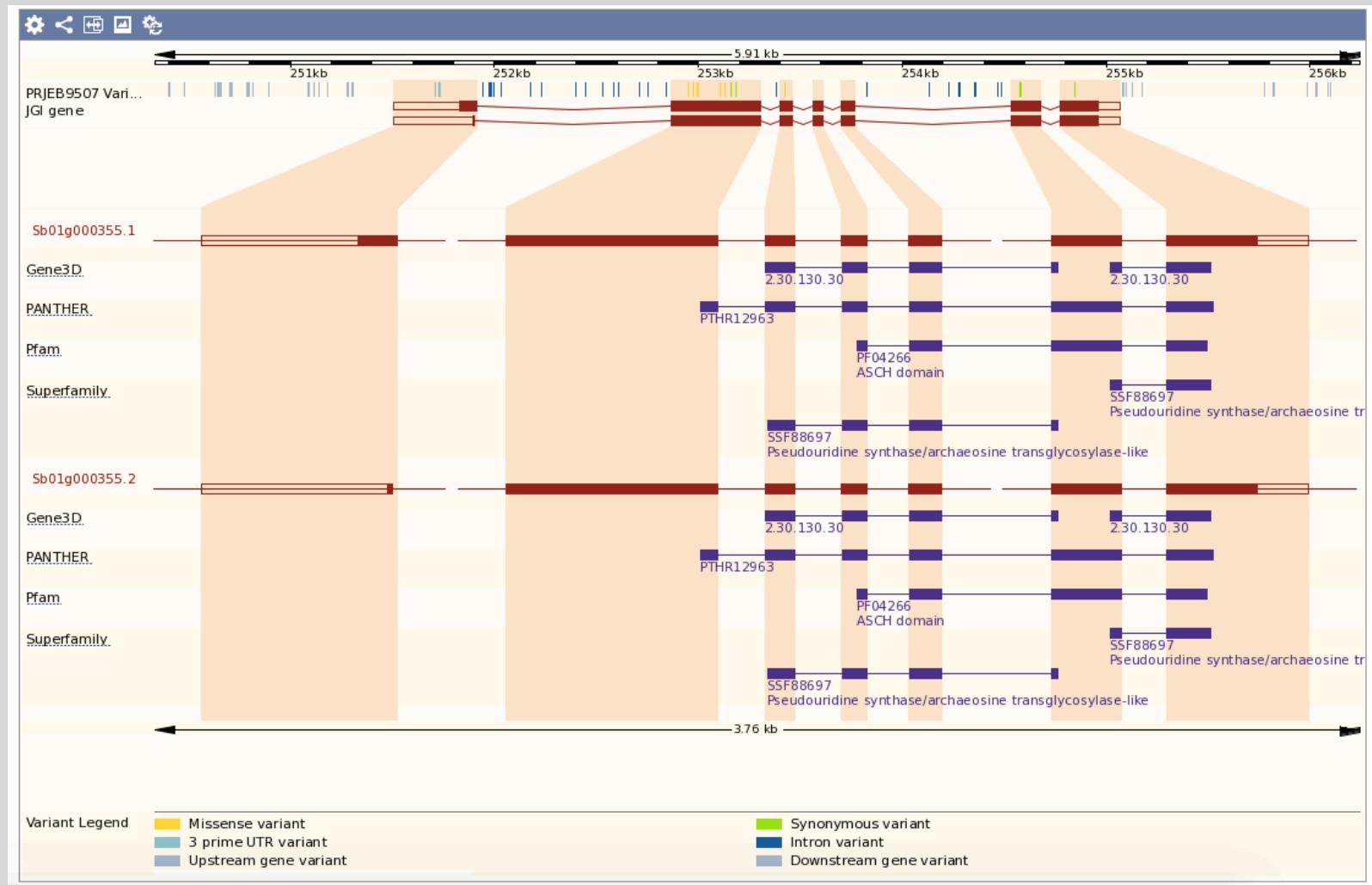
**Consequences**  
This variant affects 3 transcripts

| Show/hide columns |               |        |                |               |              |             |           |              |                         |  | Filter |
|-------------------|---------------|--------|----------------|---------------|--------------|-------------|-----------|--------------|-------------------------|--|--------|
| Gene ID           | Transcript ID | Strand | Biotype        | cDNA Position | CDS Position | AA Position | AA Change | Codon Change | SO Term(s)              |  |        |
| Sb01g000365       | Sb01g000365.1 | -      | protein_coding | -             | -            | -           | -         | -            | downstream_gene_variant |  |        |
| Sb01g000360       | Sb01g000360.1 | +      | protein_coding | 142           | 142          | 48          | S/P       | Tct/Cct      | missense_variant        |  |        |
| Sb01g000357       | Sb01g000357.1 | +      | protein_coding | -             | -            | -           | -         | -            | downstream_gene_variant |  |        |

**Study PRJEB9507\_ERZ115806**

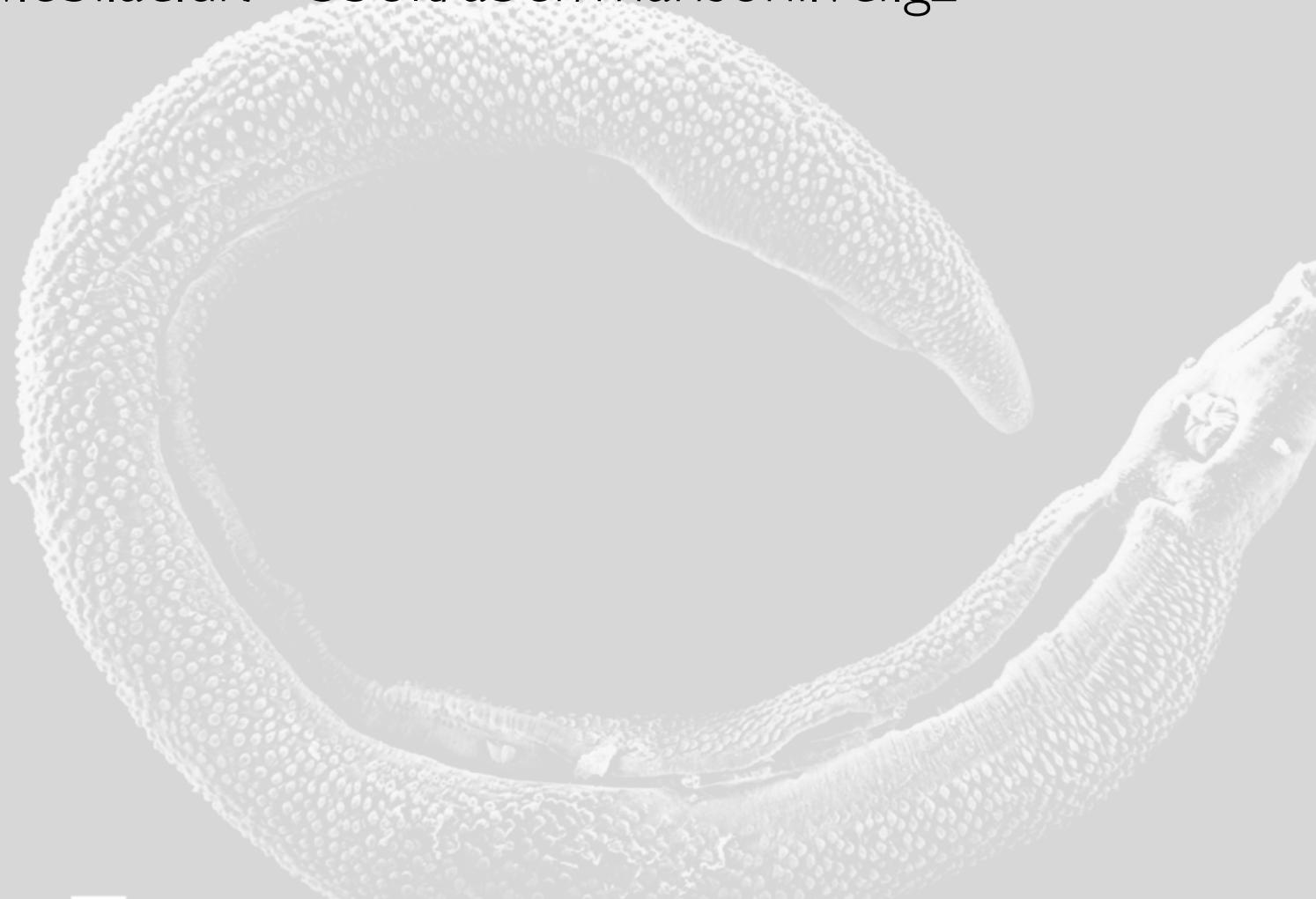

**Quality Overview**

| QUAL | DP  | FILTER | AF     | NS |
|------|-----|--------|--------|----|
| 33.0 | 278 | PASS   | 0.0645 | 47 |


**Genotypes**  
This study included 47 individuals. The genotype for each is shown in the table below.

| Show All entries                                     | Show/hide columns | Filter |
|------------------------------------------------------|-------------------|--------|
| Sample Name                                          | Genotype          |        |
| B35                                                  | C/C               |        |
| SC23                                                 | C/C               |        |
| SC326-6                                              | T/T               |        |
| IS8525                                               | T/T               |        |
| B923296                                              | T/T               |        |
| Greenleaf                                            | T/T               |        |
| PI586430                                             | T/T               |        |
| Kilo                                                 | T/T               |        |
| SC56-14E                                             | T/T               |        |
| Malisor84-7                                          | T/T               |        |
| SC62C                                                | T/T               |        |
| Rio                                                  | T/T               |        |
| M35-1                                                | T/T               |        |
| S. bicolor subsp. <i>Verticilliflorum</i> (PI300119) | T/T               |        |

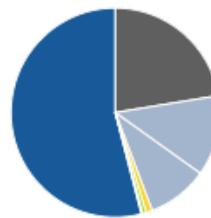
# Genome Browser Tracks




# Variant/Transcript Image

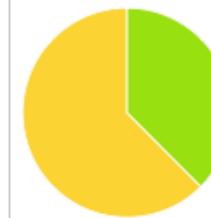


# Exercises


<http://www.ebi.ac.uk/~bbolt/aber/mansoni.vcf.gz>

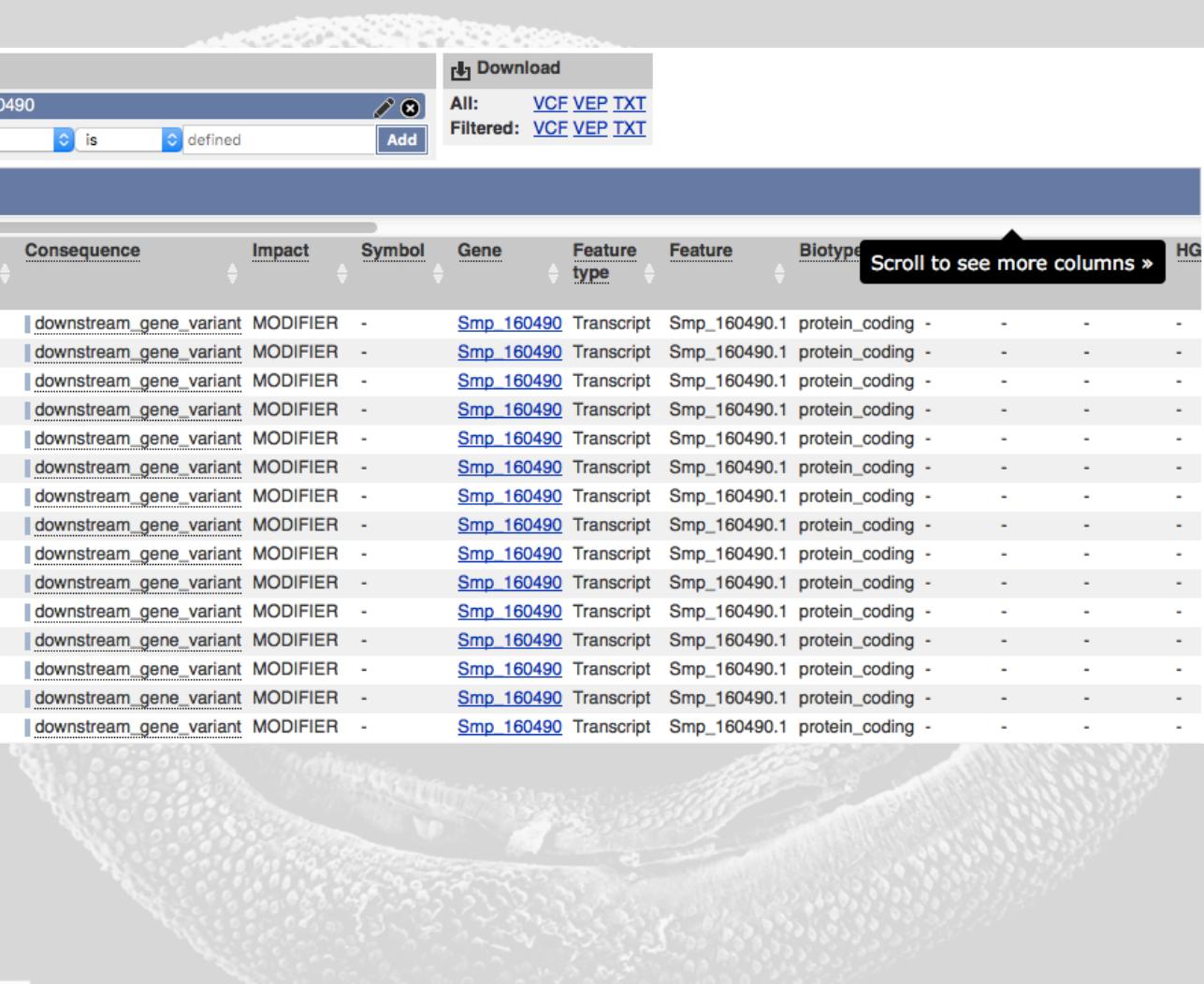


# Exercise Solutions


| Category                           | Count |
|------------------------------------|-------|
| Variants processed                 | 499   |
| Variants remaining after filtering | 499   |
| Novel / existing variants          | -     |
| Overlapped genes                   | 5     |
| Overlapped transcripts             | 5     |
| Overlapped regulatory features     | -     |

Consequences (all)




- intron\_variant: 54%
- intergenic\_variant: 22%
- upstream\_gene\_variant: 12%
- downstream\_gene\_variant: 9%
- missense\_variant: 1%
- synonymous\_variant: 1%
- splice\_region\_variant: 0%

Coding consequences



- missense\_variant: 63%
- synonymous\_variant: 38%

# Exercise Solutions



Navigation: Show: 1 5 10 50 All variants

Filters: Gene is Smp\_160490

Download: All: VCF VEP TXT Filtered: VCF VEP TXT

Show/hide columns

Uploaded variant Location Allele Consequence Impact Symbol Gene Feature type Feature Biotype

Scroll to see more columns » HG

| Uploaded variant | Location                                | Allele | Consequence             | Impact   | Symbol | Gene                       | Feature type | Feature      | Biotype        | HG |
|------------------|-----------------------------------------|--------|-------------------------|----------|--------|----------------------------|--------------|--------------|----------------|----|
| .                | <a href="#">Smp.Chr 1:118335-118335</a> | G      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:118771-118771</a> | G      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:118772-118772</a> | T      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:118973-118973</a> | C      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119104-119104</a> | T      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119118-119118</a> | G      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119483-119483</a> | T      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119484-119484</a> | G      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119485-119485</a> | G      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119573-119573</a> | C      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119738-119738</a> | T      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119775-119775</a> | C      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:119946-119946</a> | A      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:120098-120098</a> | A      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |
| .                | <a href="#">Smp.Chr 1:120380-120380</a> | T      | downstream_gene_variant | MODIFIER | -      | <a href="#">Smp_160490</a> | Transcript   | Smp_160490.1 | protein_coding | -  |